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APPLICATION OF MULTIVARIABLE SEARCH TECHNIQUES
TO STRUCTURAL DESIGN OPTIMIZATION

By R. T. Jones and D. S. Hague

SUMMARY

Multivariable search techniques are applied to a
particular structural design problem, that of determining
the minimum weight design for a stiffened cylindrical
shell subject to multiple Toad conditions. The cylinder
is stiffened in both longitudinal and circumferential
directions. Stability analyses are limited to Tinear
bifurcation buckling theory. A variety of multivariable
search techniques embodied in an existing non-linear
optimization code, AESOP, are applied to this design
problem. These techniques include elementary single
parameter perturbation methods, organized search such
as steepest-descent, quadratic, and Fletcher-Powell
methods, randomized procedures, and a generalized search
acceleration technique. Design variables are seven in
number and define stiffener spacings, stiffener dimen-
sions, and skin thickness. The relative efficiency of
the techniques are compared. It is shown that a combi-
nation of search strategies may be superior to any one
strategy in the solution of the structural design opti-
mization problem considered. It is also shown that more
than one local extremal design may exist in the class
of problem treated; however, these multiple extremals
are apparently the result of non-convex consiraint boun-

daries,



In general, the multiple extremal problem may be treated
by the warping transformation introduced by Hague in reference
1. This approach was applied to stiffened cylinder design 1in
the present study. However, the solutions converged reliably
to a unique solution with or without the transformation. The
exterior penalty function approach itself, when properly
applied, is able to effectively define the global constrained
extremal design. The multiple extremal warping transformation
was applied to an elementary unconstrained two-variable two-
extremal optimization problem during the study. The transfor-
mation consistently obtained both extremal solutions. The
optimal solutions vreported here were obtained by application
of a generalized multivariable search code, AESOP, originally
constructed under contract to the National Aeronautics and
Space Administration's Office of Advanced Research and Develop-
ment. Original documentation of this code is given in
references 1 to 3; an outline of the analysis underlying this
code is presented below.

MULTIVARIABLE SEARCH

The general non-linear multivariable optimization problem

is concerned with the maximization or minimization of a pay-off

or performance function of the form

¢=¢(ai)’ i=1,2, . . ., N (])

Subject to an array of constraints
= = = b j = ]’ 23 b 2
C; = C5ley) =0, p (2)



The a, are the independent variables whose values are to be
determined so as to maximize or minimize the performance
function ¢(oj) subject to the constraints of equation (2).
The aj may be looked upon as the components of a control
veetor, a, ih a space RN of dimension N. Since maximization
of a function is equivalent to minimization with a change

of sign, it suffices to discuss the case in which the per-
formance function is to be minimized.

Multivariable optimization problems involving inequality
constraints may also be encountered. If the constraints are
applied directly to the independent variables

: L i (3)

the inequality constraints define a region of the control
space within which the solution must lie. Inequality con-
straints on functions of the independent variables similarly
restrict the region in which the optimal solution is to be
obtained. In this case

Et(ai) < Ek(ai) < EE(a.) (4)

i

Inequality constraints can be used to restrict the search
region directly, or, alternatively, they may be applied in an
indirect fashion by a transformation to equality constraints.
Several transformations may be used for this purpose. For
example, let an equality constraint, Ck, be defined by the
transformation

L 2 L
(Ep - E)3 E, < Ey
' (5)
Cp = 0 . Ep < Ep < Ey
H 2 H
(Ey - E )%, Ep < Ep



Constraining Ck to zero will result in the constraint of
equation (4) being satisfied.

Problems involving equality constrdints can be treated
as unconstrained problems by replacing the actual performance
function, &®(a;j), by an augmented performance function, ¢*,

where

It can be shown that, provided the positive weighting constants
U, are sufficiently large in magnitude, minimization of the per-
formance function subject to the constraints,equation (2), is
equivalent to minimization of the unconstrained penalized
performance function defined by equation (6). This approach
permits search techniques for finding unconstrained minima

to be applied in the solution of constrained minima problems

at the cost of some increased complexity in the behavior of

the performance function, the performance response surface.

In practical application, the weighting constants Uj are
determined adaptively on the basis of response surface be-

havior.

Alternatives to this approach are available, notably
Bryson's approach to the steepest-descent search, reference
4, This method has been exploited in connection with the
numerical solution of variational problems encountered in
the optimization of aerospace vehicle flight paths, refer-
ences 5, 6, and 7. However, the use of such techniques
implies smoothness of the response surface. This smoothness
may not be present in general; hence, the AESOP code 1is
limited to the less restrictive penalty function approach of

equation (6)



Numerical Solution of Non-Linear Multivariable

Optimization Problems

This section is devoted to a discussion of the search
algorithms for solution of non-linear multivariable optimi-
zation problems available in the AESOP code. A wide variety
of search algorithms have been devised for the solution of
multivariable optimization problems. Many of these algorithms
are restricted to the solution of Tinear or quadratic problems.
Algorithms of this type must be supplemented by more general
search procedures if generality of solution is sought; for
engineering problems tend to lead to non-linear formulation
with the possibility of discontinuities in both the performance
function response surface and its derivative. Most of the
searches which prove effective in these problems combine a
direction generating algorithm,such as steepest-descent, with
with a one-dimensional search. Distance traversed through
the control space in the selected direction is measured by a
step-size, or perturbation parameter, DP. The object of the
one-dimensional search is to determine the value of DP which
minimizes the performance function along the chosen ray and to
establish the corresponding control vector.

In practice, the diverse nature of non-linear multivariable
optimization problems leads to the conclusion that no one
search algorithm can be uniquely described as being the "best"
in all the situations which may be encountered. Rather, a
combination of searches, some of which may be of quite elemen-
tary nature, provides the most reliable and economical conver-
gence to the optimal solution.



One-dimensional search. Multivariable search problems

are reduced to one-dimensional problems whenever a search
algorithm is used to establish a one-to-one correspondence
between the control vector and a single scalar perturbation
parameter, (DP). In such a situation

o; = ai(DP), i=1,2, . . ., N (7)

so that equation (1) becomes
b = o(a;) = o(DP) (8)

Similarly, the right hand sides of equations (2) and (6)
become functions of the scalar perturbation parameter.

The relationship, equation (7), specifies a ray through
the control space. As noted above, the objective of the
one-dimensional search along this ray is to locate the value
of DP which provides the minimum performance function value.

Numerical search for the one-dimensional minima can be
carried out in a local fashion, by the Newton-Raphson method,
for example, or by a global search of the ray throughout the
feasible region. The localized polynomial approximation is
appropriate to the terminal convergence phase in a problem
solution when some knowledge of the extremal's position has
been accumulated by the preceding portion of the search and the
problem involves a smooth function. The global search can be
used to advantage in the opening moves of a search. In the
early phase of a search the object is to isolate the approx-
imate neighborhood of the minimum performance function
value as rapidly as possible, usually with Tittle or no
foreknowledge of the performance function behavior. One
measure of the effectiveness of a search algorithm in such



a situation is the number of evaluations required to locate

the minimum point to some prespecified accuracy. It can be
shown that the most effective method of locating the minimum
point of a general unimodal function is a Fibonacei search,
reference 8. In this method, the accuracy to which the mini-
mum is to be Tocated along the perturbation parameter axis

must be selected prior to the commencement of the search.

Since the accuracy required is highly dependent on the behavior
of the performance function, this quantity is difficult to
prespecify.

Prespecification of the accuracy to which the extremal's
position is to be Tocated can be avoided for little Toss in
search efficiency by use of an alternative search based on the
so-called golden section, reference 8. This is the method
employed in the AESQOP code one-dimensional search procedure.
Search by the golden section commences with the evaluation
of the performance function at each end of the search interval
and at G = 2/(1 + ¥5) of the interval from both of these boun-
ding points. This is illustrated in Figure 1.

The boundary point furthest from the lowest resuliting
performance function value is discarded. The three re-
maining points are retained, and the search continues in a
region which is diminished in size by G. The internal point
at which the performance function is known in the reduced
interval will be at a distance G of the reduced interval
from the remaining bounding point of the original interval
for (1 - G) = G2. The search can, therefore, be continued
in the reduced interval with a single additional evaluation
of the performance function. It follows after Q evaluations
of the performance function that the position of the extremal
point will be known to within R of the original search region
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where

To reduce the interval of uncertainty to .00007 of
the original search interval, about 27 evaluations of the
performance function are required. For a reasonable number
of evaluations of the performance function this type of
search is almost as efficient as a Fibonacci search.

It should be noted that search by the golden section
proceeds under the assumption of unimodality; hence, it will
often fail to detect the presence of more than one minimum
when the performance function is multimodal. If more than
one minimum does exist, the one located depends on perfor-
mance function behavior within the original search interval.

Multiple Extremals on One-Dimensional Ray. The one-

dimensional section search described above is unable to
distinguish one local extremal from another; it will merely
find one local extremal. This difficulty can be largely
eliminated by the addition of some logic to the search, at
least for moderately well behaved performance functions;
that is, for functions having a limjted number of extremals
in the control space region of interest. An effective method
for detecting muitiple extremals is to combine the one-
dimensional search with a random one-dimensional search on
the same ray through the control space. This is illustrated
in figures 2 and 3. In figure 2 the response contours of

a performance function having two minima are illustrated
together with the initial points used in a global one-
dimensional search by the golden section method. The
behavior of the function at these points is shown 1in
figure 3. The left hand minimum is not apparent from
these points. If a single random point is added in the
interval Ly, the probability of this point revealing the
9
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presence of the second minimum is

P1 = L]/LO (10)
for any point in the interval AB indicates the presence of

a local minimum somewhere in the interval AB, and any point

in the interval BC indicates the presence of a local maximum
somewhere in the interval BC. In this latter case, there

must be a minimum of the function both to the left and to the
right of the newly introduced point.

If R random uniformly distributed points are added in the
interval L,, the probability of Tocating the presence of
the second minimum becomes

- R
Pp = 1.0 - (1.0 - Ly/L,) (11)

The function (L1/L0) is a measure of the performance
function behavior. For a given value of this behavior function
the number of random points which must be added to the one-
dimensional search to provide a given probability of locating
a second minimum can be determined.

The presence of multiple minima on a one-dimensional cut
through an N-dimensional space does not necessarily indicate
that the performance function possesses more than one minimum
in a.multi-dimensional sense. It may be that the performance
function is merely non-convex. This is illustrated by figure
4. The performance function behavior on the one-dimensional
search in figures 2 and 4 is identical. In figure 2 this
indicates the presence of two local extremals; in figure 4,

a non-convex performance function.

When a one-dimensional search detects the presence of
multiple extremals in the local sense above, a decision must

12
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be made as to which of the apparent extremals is to be
pursued during the remainder of the search. Here, without
foreknowledge of the performance function behavior, logic
must suffice. Typically, the left or right hand extremal,
the extremal which results in the best performance, or

even a random choice may be made.

It should be noted that logic of this type is not cur-
rently available in the AESOP code. The AESOP one-dimensional
search procedure has three distinctive phases. First, each
search algorithm defines an initial perturbation using either
past perturbation stepsize information or a perturbation mag-
nitude prediction as in the quadratic search below. Second,
a perturbation stepsize doubling procedure is employed until
a point exhibiting diminishing performance js generated.
Third, having coarsely defined the one-dimensional extremal
pesition from steps one and/or two, a golden section search
is employed to locate the extremal with reasonable precision.

Multiple extremals - general procedure. The multiple
extremal search technique included in AESOP is based on
topologically invariant warping of the performance response
surface. The response surface is warped in a manner which
retains all the surface extremals but alters their relative
locations and regions of influence. The region of influence
of an extremal is defined as the hull or collection of all
points which lead to the extremal if a gradient path is
followed. Reducing the region of influence of an extremal
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decreases the probability of locating a point in the neigh-
borhood of the extremal if points are chosen at random.
Again, in an organized multivariable search, the probability
of locating an extremal having a small region of influence
is less than that of locating an extremal having a large
region of influence. For example, suppose the extremals

of the one-dimensional function of figure 5 are to be deter-
mined in the range o <o < oy by the sectioning approach.
The four initial values employed in this technique are
denoted by f] to f4.

Following evaluation at these four points, fgq is dis-
carded, and the function is evaluated at fg. Atthis point
the right-hand extremal, e2, has been eliminated from the
search which now inevitably proceeds ta the Teft hand extre-

mal at ej.

To find the second extremal, the Function F is warped

by writing

F(g) = F(a) (12)
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ay-a*

2N
g = (aH-a*)[Jlﬂif] + a*; o > o¥

2N
£ = -(a*-aL) [1"_-&_] Fo*; a* > g (13)

a¥*-a)

where N is a positive integer, and a* is the location of the
left hand extremal.

A typical relationship between £ and o is shown in
figure 6 for the case N = 1. Differentiation of equation
(13) with respect to o when N = 1 results in

E;l - 2[(1‘0'*] ; o > OL*
Lag-a*]

£ = 2[a*-a] D o < o (14)
[o*-a ]

Note that as a - a*, £€' » 0 from both the left and
right. At a = o and at o = ay, &' = 2. 1In the regions
o <ac< a * and a¥ < g < oys & varies parabolically
with a. Figure 6 illustrates these points. It can be
seen that a region Aaj centered about a* transforms into
a smaller region A&y located in the neighborhood of
£ = a*, On the other hand, a region Ao situated in the




neighborhood of the upper search limit, oy, maps into a
wider region in the neighborhood of £ = ay. In general,
the slopes at o = af and o = ay are given by 2N; the
greater N, the greater the warping becomes.

The effect of introducing a moderate warping trans-
formation on the function of figure 5 is shown in figure
7. It can be seen from figure 7 that the region of influ-
ence of ey is reduced, and the region of influence of eo
is increased. On the warped surface search by sectioning
commences with evaluations of performance at f; to f&.
Following these initial evaluations f{ is discarded (as
opposed to the discard of fg; on the unwarped surface),
and the function is evaluated at the additional point fé.
The points fé and fé straddle the extremal e which is
now inevitably located by further sectioning evaluations.
Figures 8a to 8j illustrate the warping transformations
for a range of N between 1 and 10 when the transformatioh
is applied at the point a* = .5, the symmetric case. It
can be seen that when N = 1, twenty per cent of the
warped control space corresponds to approximately 45 per
cent of the unwarped control space in the vicinity of
the transformation origin (a = .5). When N = 10 twenty
per cent of the warped control space transforms into
ninety per cent of the unwarped control space.

Sectioning Parallel to the Axes. The independent
variable perturbation algorithm in the sectioning search

is
Ao, = 0, i#r
DP, i =r r=1,2, . . ., N (15)

n
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oneemre,

This is simply the parametric or univariate search
approach. Al11 but one of the independent variables are held
constant while a one-dimensional search parailel to the Rth
variable axis determines the best value of the remaining
variable, ap. The variable ap is then set to this value,
and the process is repeated with one of the remaining
independent variables. When all N independent variables
have been perturbed in this way, a sectioning search cycle

has been completed.

The N-dimensional search can then be continued with
another cycle of sectioning or by one of the other search
techniques described below. In practice, it has been found
advantageous to perturdb the independent variables in a
random order within each sectioning cycle. The method can
be used in conjunction with either a local or a global
search as outlined in the two preceding sections. The
behavior of this search in the solution of a straightforward
two-variable optimization problem is illustrated in Figure 9.
It may be noted that the AESOP code searches from boundary
to boundary in each varijable using a golden section search

procedure.

Sectioning to Define Local Sensitjvities. The sec-
tioning search can readily be applied to the problem of
performance or constraint sensitivity determination. Thus,
by the device of omitting the updating of each control
variable oy following the sectioning search on the pth
parameter, the sequence of sectioning searches is performed
about a fixed nominal point. When such a search is per-
formed in the vicinity of a known extremal point, the
penalties for off-optimal design can be assessed. Away
from an extremal point, the search merely provides local
sensitijvities in a similar manner to the manual perturbation ;; 

methods employed in conventional trial and error design 7

evolution.
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Steepest-Descent Search.

algorithm is

2C- T
3

{aa) =-[w3"3{?-gl} - [5¢) [K3] "{Kz}z

x

The steepest-descent search

/(DP)Z- DC [K31'{DC}
Ky- K2 [K3I*{Kz}

- 1257 kg1 el (16)

Here, the matrixz W is the metric tensor of the control space
and serves to define a generalized measure for the magnitude
of a control vector perturbation. The vectors {8¢/%a} and

{8C/3a} are defined as

3¢ 3¢ 3¢

9a i Baz’ ot aan
and

aC oC aC

ooy ° Baz L aan

1
respectively.

The K matrices are defined as

= |2 “1 09
K o= |32 i1t 32 (17)
36 -
K= (32107 2% (18)
[k31= [2Srw 2897 (19)
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The perturbation parameter, (DP), is defined by

(DP) = |Aaf [WI{Aa} (20)

The vector DC is the desired change in the constraint
functions. For an unconstrained problem,(16) reduces to

(o) = -rurtedey /AR (21)

The performance function change associated with the pertur-

bation of equation (16) is

- .5 - .5
D¢ = -<K1 - |K2][K3] 1{K2}> <(DP)2-U3QJ [k31" {DC}>
+ Ko |[K3] ™ {DC} (22)

Equation (16) does not specify a one-dimensional
search directly since the perturbation parameter (DP)
and each component of the constraint vector change DC
can be independently specified. This difficulty is
conveniently eliminated if the components of DC are
expressed in terms of the perturbation parameter. Let
(DP) and DC be arbitrarily assigned, say (DPO) and 550,
respectively. Now consider the one parameter set of
values for DC defined by

BC = (gpg)- D¢ (23)

It follows from equations (16) and (22) that (23) spec-
ifies a one parameter family of perturbations in which
the non-linear performance and constraint functions vary
linearly with (DP), to the first order.
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Equations (16) to (22) are valid for small pertur-
bations in the independent variables provided the der-
ivatives involved are continuous in the region of the
control space defined by equation (20). 1In practice,
when this condition is not satisfied, the steepest-
descent algorithm can be used to locate a promising
direction for a one-dimensional search provided the
derivatives are computed numerically. 1In this case,
however, equation (22) ceases to provide an accurate
indication of performance function behavior along the
specified ray.

When dealing with performance and constraint
functions having continuous first derivatives, the
perturbation parameter value to be used in equation (16)
can be determined from a second order Taylor's expan-
sion of the performance function behavior in terms of
DP. The coefficients in this series expansion can be
readily obtained from the conditions of zero change for
DP = 0, linear slope for DP = 0, and from the actual value
of the performance function at a point in the neighborhood
of the point at DP = 0. This method for determining the
best perturbation parameter value is discussed in some
detail in references 5 and 6. When dealing with less reg-
ular functions, the one-dimensional search by sectioning
can be used to determine the perturbation parameter value.
This is the technique employed in the optimization program,
AESOP, references 1 and 2; for the AESOP code converts all




constrained optimization problems to unconstrained problems
by the penalty function device, equation (6). The resulting
response surface combines both performance function and
weighted constraint functions. Inevitably, this surface has
a more complex topology than that of the unconstrained per-
formance function. Program AESOP is also limited to the
penalty function approach to constrained optimjzation, and,
hence, it utilizes the reduced algorithm of equation (21)
rather than the explicit constraint algorithm of equation 16.

Steepest-Descent Weighting Matrices. The weighting
matrix introduced in equations (16) and (20) must be positive
definite to assure a positive distance between any two non-
coincident points in the control space. Apart from this
restriction, the choice of weighting matrix is arbitrary.
Inspection of equation (16) reveals that any descending
direction is a steepest-descent path for some choice of
the weighting matrix W. This can be simply illustrated
when only two independent variables are involved. Figure 10
depicts a small region of the control space R?. The per-
formance function response contours appear as a series of
parallel lines on this microscopic region of the control
space. The perturbation zones corresponding to three
weighting matrix choices are shown. The first zone corres-
ponds to the choice of a unit matrix for W. It follows from
equation (20) that for a given value of (DP)? the search
zone is a circle of radius (DP). The steepest-descent
direction is that in which the performance improvement is
greatest. This is the direction of a line from the origin

28
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of the circular search zone to that point on its circumference
which provides the smallest value of the performance function
¢(a). With this choice of weighting matrix, the steepest-
descent direction is perpendicular to the response contours.
Paths of this type are illustrated in figure 11 by the solid
lines emanating from points A and B. From the nominal point
A, search perpendicular to the performance response contours
is very efficient. From .uint B, however, this type of

search results in the meandering path illustrated. It is
assumed here that once a steepest-descent direction is located,
an exhaustive search for the minimum in that direction will

be undertaken in view of the high cost of recomputing the
derivatives in many problems. Even if this were not the

case, search normal to the response contours can often be
improved upon. For example, it is obvious that even in the
straightforward two-dimensional problem of figure 11 the
dashed search direction is superior. This direction requires
a priori knowledge of the extremal's position, information

not normally available,

Returning to figure 10, the second search zone
depicted corresponds to the choice of a diagonal matrix
for W. The positive-definite constraint on W requires
that all diagonal elements of the weighting matrix be

positive. In this case the search zone becomes elliptical
with the major and minor axes of the ellipse being parallel
to the coordinate axes. It may be noted that as either of

the diagonal elements of W becomes large in relation to the
remaining element, the corresponding element in W inverse
together with the predicted change in the associated inde-
pendent variable becomes small. In the 1imit this reduces
the search to a one-dimensional search in the remaining
coordinate. The perturbation zone then becomes a slit
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parallel to that coordinate axis of length 2 . (DP), as
illustrated in figure 10. In the case illustrated, the
steepest-descent path is in the descending oy direction.

Finally, the search zone corresponding to the choice
of an arbitrary positive-definite weighting matrix is
shown. From equation (20) and the positive-definite con-
straint on W, the search zone remains elliptical, but the
principle axes may now have an arbitrary orientation to
the axes of ay and ap. It follows that since the elliptic
search zone can have any orientation and eccentricity, any
direction in the control space is a possible steepest-
descent path; for in all cases, the path of steepest-descent
lies in the direction of a Tine joining the search zone
origin to the lower point of tangency between the boundary
of the search zone and the performance function response
contours. The discussion above may readily be extended
to control spaces of higher dimensionality.

When attempting the solution of optimization problems
by the steepest-descent method, the analyst is constantly
faced with the problem of choosing a satisfactory weighting
matrix for the search continuation. The problem is com-
pounded by the fact that the slopes of the performance
function with respect to the independent variables can,
and frequently do, vary by many orders of magnitude. The
arbitrary choice of a unit matrix in such situations can
lTead to distressingly slow convergence of the numerical
search; for it is in the nature of many problems that in
those directions in which the slopes are greatest the re-
sponse surface is highly non-linear. Only small pertur-
bations will be successful in the direction of these strong
control variables. In those directions in which the slopes
are small, the contours are often relatively 1inear, and
large perturbations may be required in these weak control

variables.
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In such situations the local steepest-descent direction
for [W] = [I] is quite misleading; for contrary to the resul-
ting steepest-descent direction which, by equation (21)
results in independent variable perturbations which are in
proportion to the response surface partial derivatives, the
best direction in which to proceed may well involve large
perturbations in the weak control variables of small slope.
This behavior is illustrated for a two-dimensional case in
figure 11 by the dashed 1ine emanating from B.

The problem of choosing a satisfactory weighting matrix
also arises when the steepest-descent search is applied in
its variational form, reference 5, and when a combination of
continuous control variables and parameters are encountered
as in the optimization of muitiple-arc problems 1n'f1ight
path optimization problems, reference 6. In these references
it is suggested that the weighting matrices be based on the
Ffirst derivatives of the unconstrained performance function
with respect to the control. This approach can be used in
the solution of multivariable optimization problems also, by
writing

-1
Wig = Ay + By I%}l’ i=
=0, 1 # ]
In practice, alternate use of the resulting combined weighting
matrix and the unit matrix tends to provide a reasonabie con-
vergence rate at points well removed from the extremal. The
AESOP code employs such a matrix in combination with a search
range non-dimensionalization term and a learning factor. This
factor emphasizes perturbation of control parameters which
change in a monotonic direction and de-emphasizes those per-
turbations whose perturbations fluctuate in sign.

Random Ray Search. The difficulty, in some cases,of de-_

fining a suitable control variable metric tensor together with
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the fact that any descending path is a steepest-descent
direction for some choice of metric tensor suggests the
possibility of searching along a random ray through the
control space. The algorithm for random ray search is

Aoy = Ri(tDP), i=1,2, . . .,N (25)

where the Ri,proportiona1 to the direction cosines of the
ray, are uniformly distributed random numbers satisfying

-1.0 < Ry < +1.0, 1 =1, 2, . . ., N

The positive sign in equation (25) is taken if g Sg is
negative; the negative sign is taken when this derivative

is positive.

The utility of this type of search tends to be in
proportion to the complexity of the performance function
response contours. On a well-behaved problem there is
1ittle to recommend this type of search; on a problem
involving unexpected behavior on the part of the performance
function, a random ray search can be quite efficient, par-
ticularly when used with the pattern search acceleration
procedure below. The method is, of course, equivalent to
a steepest-descent search using a randomly generated metric

tensor.

Quadratic search*_ An alternative systematic approach
to the definition of an arbitrary or empirical weighting
matrix is provided by second order or quadratic method. It
can be shown, for example, in reference 1, that on an

elliptic second order response surface the weighting

matrix
W, . =3¢
iJ aaiaaj (26)

will immedijately define the point

* Also known as the Newton-Raphson method
34
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{a*} = {ao} + {8al (27)

where {6a} is computed from equation (21) with (DP)? = .5K7.
On a more general non-linear response surface, equation (27)
merely defines a direction for subsequent search in the
manner of the steepest-descent technique. This is illus-
trated in figure 12. Here, the approximating elliptical
contours computed at point 0 define an approximate extremal
location at P through equations (26) and (27). Subsequent
search along the ray OP results in the definition of a one-
dimensional extremal. This point is then used to fit another
approximating elliptic contour, and the process is repeated
until the extremal point at Q is located.

The quadratic search procedure can be quite rapid in
control spaces of low dimensionality. In high order spaces
the approach is usually impractical as a result of the
requirement to establish the second order weighting matrix
of equation (26). 1In many practical engineering problems
these derivatives cannot be obtained in closed form; in such
cases the derivatives must be obtained numerically, for
example, reference 1. Computation of these derivatives
requires at least (N+1)(N+2)/2 evaluations of ¢ at each
point where an approximating quadratic is employed. Clearly,
for large N this computation may become impractical.

Davidon or Fletcher-Powell Method. Davidon's method
is a hybrid first order/second order technique. The objec-
tive of Davidon's method is to arrive at a reasonable
approximation to the second order weighting matrix of
equation (26) without the use of (N+1)(N+2)/2 evaluations
of ¢. It can be shown that on a quadratic (second order)
response surface N steepest-descent searches performed in
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the manner described previously will lead to definition of
the weighting matrix of equation (26), if the following
formula is employed:

[Wl.,, = [Wl; + [Al, + [B, (28)
where
[A]1. ) {Aa}.LAOL_I1 (29)
laa] .22
W -1{A 20y Wl
[B].i = [ J oo i _I'l[ (30)
LA [w] ’l{A aa}1
(Wit = [11 (31)

Here, |Aali 1is the change in position during the jth one-

dimensional search and

is the change in gradient vector between the beginning and
end of the 1th one-dimensional search. 0On a numerically

well-behaved function this technique may work well. When
appreciable numerical noise is present in the calculation,
the method may produce erratic convergence to the extremal
point, or convergence failure. Again,{ ¢} is the gradient of
¢ defined as (20 29 99 4,

da1* %aZ ° ° " dan
Pattern Search. 1In the present report, pattern search

refers to a search which exploits a gross direction revealed
by one of the other searches. The search algorithm is

bay = (a? - a;) - (DP), i=1,2,. . ., N (32)




where u% and a% are the components of the control vector
before and after the use of a preceding search technique.
This type of search is illustrated in figure 13 following
a section search. The combination of a section search

and a pattern search in the problem illustrated leads
directly to the neighborhood of the extremal. Repeated
sectioning, on the other hand, would be a very slowly
converging process due to the orientation of the contours
with respect to the axes of the independent variables.

It may be noted that a simple rotation of the independent
variable axes by 45° results in sectioning alone becoming
a rapidly converging process in this example. The pattern
search can also be used to accelerate the steepest-descent
process provided it follows two successive descents as in

figure 14,

Adaptive Search. Adaptive search is a form of small
scale sectioning; however, instead of locating the position
of the one-dimensional extremal on each section paraliel

to a coordinate axis, the coordinate is merely perturbed
by a small amount, Do, in the descending direction.

The search commences with a small perturbation in one
of the independent variables, a3 a positive perturbation
is first made; if this fails to produce a performance
improvement, then a negative perturbation is tried. If
neither of the perturbations produces an improved perfor-
mance value, the variable retains its nominal value, and
Ac is halved. If a favorable perturbation is found, the

r
variable a_ is set to this value, and Aar is doubled. The

r
process is repeated for each independent variable in turn,
the order in which the variables are perturbed being
chosen randomly. At this point an adaptive search cycle

is complete, and the cycle is then repeated. A two-
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dimensional illustration of this search is presented in
figure 15. 1In the particular problem illustrated, the
method converges rapidly reaching the neijghborhood of the
extremal within six evaluations.

The search algorithm can be written in the form

da, = 2.005¢=Tr) . (pp) (33)

where S, is the number of cycles in which the search has
successfully perturbed the rth independent variable, and
T, is the number of cycles in which a perturbation of the
pth variable has proved unsuccessful. While this search
can be looked upon as a one-dimensional approach, this
viewpoint is somewhat artificial. Here, the scalar quantity
(DP) merely defines an initial perturbation for each inde-
pendent variable. Once started the search proceeds inevi-
tably to its conclusion, the perturbation in each independent
variable being adaptively determined according to equation
(33) on the basis of the performance function response
contour behavior encountered during the particular problem
solution. This search can be quite efficient when used in
combination with the pattern search acceleration procedure.
Magnification. When studying discrete models of con-

tinuous systems of the type encountered in certain engineering
problems such as aerodynamic shaping or structural design
problems, there is a tendency on the part of some search
algorithms to achieve a favorable shape before satisfying

the desired constraint levels. 1In such cases, when it is
known that the unconstrained extremal is the null vector,

a simple magnification search can lead to rapid convergence

to the desired solution. The magnification algorithm is

Aa; = oy * (DP), i=1,2,. .., N (34)



v

\]
Q.
Y —Starting Point

/

FIGURE 15. _ADAPTIVE SFEARCH




Here (DP) is positive and all components of the control
vector are to be simultaneously perturbed. Generally,
the unconstrained extremal point corresponds to the null
vector; this method may prove efficient.

Arbitrary Ray Search. 1In practical design optimization
a search along an arbitrary multidimensional ray can be of
utility. For example, when two minimal extremal solutions
appear to be possible, a search on the ray connecting the
two points should reveal the presence of a maximal extremal
somewhere onh the ray between the two minimal extremals. The
algorithm for this search is

Aoy = (a? - a:) (oP), i=1,2, . . .5 N (35)

1 2 . . .
where oy and oy are the two minimal extremal points. In

general, u; and a: may be any two points in the control space.

Random Point Search. A straightforward Monte-Carlo
search which examines point designs distributed in a uniform
random manner within the feasible region is often of utility

when the response surface is of a complex nature. Such a
search is included in the AESOP code primarily for use as a
nominal point design generation procedure.

STRUCTURAL ANALYSIS OF A STIFFENED CYLINDER

The structural analysis employed in this study is Zden-
tiecal to that employed in a previous National Aeronautics
and Space Administration-sponsored study reported by Morrow
and Schmit in reference 9. Morrow and Schmit's analysis of
a stiffened cylinder is reproduced for completeness in Appen-

dices A and B. The computer code for the failure mode analysis

employed in the present study is that developed in reference
9 without change. However, the Fletcher-Powell/Fiacco-
McCormick procedure of reference 9 was replaced by the refer-

ences 1 through 3 optimization program AESOP during this study.




Figure 16 illustrates the class of structures considered.
The structure is a cylinder stiffened in both Tongitudinal
and circumferential directions. A typical shell element is
presented in figure 17. The shell element is defined by
seven parameters:

dX = Depth of longitudinal stiffeners *

d¢ = Depth of circumferential stiffeners™

zx = Spacing of circumferential stiffeners
£¢ = Spacing of longitudinal stiffeners

ts = Skin thickness

tX = Thickness of longitudinal stiffeners

t¢ = Thickness of circumferential stiffeners

These parameters are the design vector components in the
stiffened cylinder design optimization problem considered.

[2]= [t txs tys Ay dys 2,5 & (36)

The optimization problem considered is that of weight
minimization subject to yield and buckiing failure mode
constraints. Cylinder weight, the payoff function, is
taken from Appendix C of reference 9.

* Positive number means inside stiffeners; negative number
means outside stiffeners.
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FIGURE 16. AN INTEGRALLY STIFFENED CYLINDER .
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Multiple load cases are considered. For each load case,
inequality consgstraints are placed on five yield failure
modes, Equations A27 and A29.

Skin yield

Longitudinal stiffener yield in tension
Longitudinal stiffener yield in compression
Circumferential stiffener yield in tension
Circumferential stiffener yield in compression

GO 2w -

A distortion energy type criterion is used in the skin for
the biaxial state of stress. In the stiffeners, the uni-
axial state of stress must have a value between the compres-
sion yield value and the tension yield value.

Three buckling failure modes of the cylindrical shell
are considered:

1. Gross buckling of the entire cylinder
(gross buckling)

2. Buckling of the cylinder between circum-
ferential stiffeners (panel buckling)

3. Buckling of the cylindrical skin (skin
buckling)

In the gross buckling mode, the effect of the stiffeners
are averaged over the stiffener spacing. For the panel
buckling mode, only the longitudinal stiffeners are




averaged in. Bending stiffnesses of the stiffeners, the
torsional stiffnesses, and the effects of eccentricity are
taken into account. The cylinder buckling analysis is a
linear classical small displacement analysis, assuming
simply supported boundaries and a uniform prebuckled mem-
brane force and displacement distribution. The same anal-
ysis is used to determine the critical loads for gross,
panel, and skin buckling, by substituting the appropriate
stiffness properties and displacement patterns. An expres-
sion for the buckling Toad in terms of the mode shape is
given by equation A20 or A22. The critical buckling 1load
is found by determining the buckling loads for a large
number of mode shapes and selecting the lowest of these
loads as the critical value.

Stresses and strains in the skin and stiffeners prior
to buckling are determined from the membrane force distri-
busion, equations A12, A13, and Al4. The strains in the
stiffeners where they join the skin are assumed to be the
same as the corresponding strains in the skin.

Three failure modes are considered for the stiffeners:

1. The longitudinal buckling stress 1is
calculated from equation A23

2. Outside circumferential stiffeners can
buckle either when the cylinder expands

or contracts under load

3. Inside circumferential stiffeners can
buckle only when the cylinder contracts.
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The expression for the circumferential stiffener
critical strain, equation A24, derived in Appendix A,
Section A.9, is verified for two limiting cases in
Appendix B. In the stiffener buckling analysis, simply
supported boundaries are assumed at all edges where the
stiffener connects with the shell or the other stiffeners.

In the optimization procedure employed herein, all
buckling and yield constraints are expressed in the form

P < Py (38)

where Py is the load which the cylinder is to support,and
ﬁk is the critical load for the kth failure criteria. These
inequality constraints are converted to equality constraints
by a one-sided transformation in an analogous manner to
that of equation (5).

v, = 0; P, < Py (39)

(Pp = P)%s P> Py (40)
Equations (30) and (31) may define a large number of con-
straints as k varies over all failure criteria and load
conditions. For example, with fifty Tongitudinal and fifty
circumferential buckling modes considered for gross, panel
and skin buckling and ten load conditions, the number of
constraints to be considered is

N, = N x N.. x N

k FC ij L (41)

where

Nk = Number of constraints




NFL = Number of failure criteria considered
equals three

Nij = Number of buckling mode combinations
equals 50 x 50 = 2,500

NL = Number of load conditions equals ten

In this particular example, there would be 75000 buckling
constraints. Each constraint corresponds to a particular
mode shape and load condition. In applications to-date,
the maximum number of load conditions considered is three
which, in the example, would result in the maximum of 22500

constraints.

In practice, computation of the violations for this
number of constraints becomes a time consuming process
when each constraint violation is checked at a number of
points in the control space. In reference 9 Morrow and
Schmit reduced the computational time by introducing partial
or approximate analyses. At the beginning of a synthesis
a complete cylinder analysis is performed. The word
"complete" means that a Targe number of buckling mode
shapes are examined. (Each mode shape is a constraint).
The subset of mode shapes that is most active in the com-
plete analysis is saved, and these mode shapes are examined
in several subsequent approximate analyses. These approx-
imate analyses are carried out during a succession of
moves through design variable space. Periodically, a
complete analysis is performed, and the subset of mode
shapes used in the approximate analyses is redefined. An
approximate analysis is approximate only in that the number
of buckling mode shapes examined jis small compared with the
number of buckling mode shapes examined on a complete analysis.

50

B
=0



This same procedure was employed in the present study.

Following Morrow and Schmit, when a large number of constraints
are checked,the analysis is defined to be complete; otherwise
the analysis is approximate. In a typical load case problem a

complete cylinder analysis required three seconds on a CDC
6600 computer while an approximate analysis in which 70
active constraints were retained required .03 seconds.
Clearly, computer time requirements can be significantly
reduced by a good mix of complete and approximate analyses.
However, it must be noted that when successive complete
analyses are too widely separated in the control space,
convergence rates may diminish to the point where compu-
tational time gains are negated.

MINIMUM WEIGHT DESIGN OF
STIFFENED CYLINDERS

In this section a variety of minimum weight stiffened
cylinder designs are considered. Cylinder designs are
optimized by a coupled version of the multivariable
optimization program AESOP of references 1 through 3 and
the Morrow and Schmit structural analysis program of
reference 9. The technique employed is that of design
evolution by repetitive perturbation and analysis as
illustrated in figure 18. Here, a nominal design charac-
terized by the control vector w, is supplied to the
optimization program. The design parameters corresponding
to this control vector are, in turn, passed to the system
model which is, in this case, a stiffened cylinder analy-
sis program, by the optimizer. The system model operates
in a black box fashion and evaluates the system performance
characteristics consisting of the weight and failure
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FIGURE 18. OPTIMIZER SCHEMATIC
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criteria constraints. No explicit derivative computations
are required by the optimizer. The performance character-
istics are then transferred from the system model back to
the optimization program.

At this point a succession of perturbed designs are
defined within the optimization program, and the computa-
tion loop is repeated with improving designs being
retained and inferior designs being rejected—an evolu-~
tionary process. The optimization program contains a
variety of perturbation algorithms as illustrated in
figure 19. These algorithms may be employed separately
or in combination at the analyst's option. The repetitive
design process outlined defines a sequence of gradually
improving designs which lead from an arbitrarily selected
initial design which may or may not satisfy the constraints
to a locally minimal weight design which satisfies the
constraints. The initial design need not satisfy the con-
straints because an exterior penalty function is used in AESOP.

Search Sequence

In general, a combination of search algorithms will
tend to produce more reliable convergence in the solution
of a non-linear parameter optimization problem than the
repetitive applications of any single algorithm. Through-
out the remainder of this report the search algorithm
combination employed will be designated by an array, M.
The algorithm corresponding to an element of ﬁ, say Mi,
is obtained from the following set of values:

M,

1, Sectioning Search
2, Pattern Search
3, Magnification Search
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Steepest-Descent Search

Adaptive Creeping Search
Quadratic (Newton-Raphson) Search
Davidon (Fletcher-Powell) Search
Random Point (Monte Carlo) Search
Random Ray Search

W 00 ~N Oy 01
»

Typical Optimizatian Algorithm Behavior

The

in Stiffened Cylinder Design

relative efficiencies of a variety of optimization

algorithms was studied by repeated solution of one stiffened

cylinder design problem. An aluminum design was used in
the study. Cyltinder physical characteristics were:

L = 281, Cylinder length, inches

R = 95,5, Cylinder radius, inches

E = 10.5 x 10°%, Young's modulus of elasticity

1bs/in?

Yy = .101, Weight density, 1bs/in?3

v = ,33, Poisson's ratio

o, = 50,000., Yield stress, 1bs/in?
A single load condition was considered. This was:

N = 800., Applied axial force per unit length

of circumference, 1bs/in.

P = 0.0, Radial pressure

The problem is solved both with and without constraints

on the stiffener depth/thickness (d/t) ratios. When the
(d/t) limits are omitted, the problem considered is iden-

tical fto

that of problem 7-1 in reference 9.
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Solutions Without (d/t) Limits

Table I (figure 20) presents the results obtained

when (d/t) limits are omitted.

In the lower portion of

the table, solutions obtained by Morrow and Schmit in
reference 9 ara included for comparison purposes. The
table presents both final design vector and the corres-
ponding weight obtained. The solutions obtained by
program AESOP all utilize the starting vector used in
Case 7-1 of reference 9, that is:

legl = .05, .1, .05, 1., 2., 8., 3.] (42)

Starting vector elements are defined in equation (27).
Cylinder weight corresponding to the starting vector is

1681.7 1bs.

It can be seen from figure
mal cylinder weight designs are
AESOP search algorithms and the
Two search combinations achieve
solutions reported in reference
are

20 that a variety of mini-
obtained from both the
method of reference 9.
weights well under the
9. These combinations

M = |9, 2, 9, 2, 5, 2, 3]

and

(]

M) = L7, 2,7, 2]

The first combination is the recommended procedure for

the solution of stiffened cylinder probiems. These two
search algorithms produce minimum weight designs of 682
and 684 1bs., respectively, approximately 30% lighter than
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the best corresponding solution in reference 9. Depth/
thickness ratios utilized in the two best AESOP designs
are

(d/t)¢ 10% and 320

14.1 and 13.9

(d/t),

It can be seen that in both cases completely unrealistic
circumferential stiffener (d/t) values are being employed.

The designs attained appear to be quite different from the
heavier cylinder of reference 9. Detailed results of solutions
without d/t 1imits are presented in Tables D1-D7 of Appendix D.

Solution With (d/t) Limits Imposed

Unrealistic stiffener depth-to-thickness ratios can
be eliminated by the introduction of inequality constraints
on stiffener section geometries. In the present report
inequalities of this type are transformed into equality
constraints by constraining FX and F¢ to zero, where

Fx = 03 (d/t)x < 20
= [{d/t), - 201% 5 (d/t), > 20  (43)
Q) = 0 (d/t)¢ < 20

[(d/t)¢ - 20]%; (d/t)¢ > 20 (44)
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Figure 21, Table II, presents solutions obtained with
these constraints imposed. The constraints are imposed
as "soft" boundaries by the device of limiting the

growth of the adaptively determined constraint weighting
factors, (Uj of equation 6), within the optimizing pro-
gram AESOP. Detailed results of solutions with d/t limits
imposed are presented in Tables D8-D13 of Appendix D.

Introduction of (d/t) limits reduces the spread of
minimal designe, figure 21, which now exhibit a range
of weights ranging from 807 to 894 pounds. It should
be noted that all designs in figure 21 produce lower
weight than the reference 9 designs of figure 20 which
are not subject to the additional (d/t) constraints,
The weight improvement over these designs varies from
eight per cent to seventeen per cent when compared to

the best reference 9 design, (979 pounds).

For all AESOP solutions shown in figures 20 and 21,
except for the quadratic search in figure 20, two suc-
cessive runs of approximately ninety system seconds each
were made. Therefore, the results obtained indicate how
well the various combinations of search procedures did
for a given amount of computer time.

The spread of weights shown do not indicate that
AESOP has obtained multiple solutions but imstead indicate
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the design vector obtained after a given amount of com-
puter time. It is obvious that the AESOP solutions

shown in figure 20 have not all converged. The quadratic
search without d/t limits terminated during the first

run due to a singular matrix.

It can be seen from figure 21 that after imposing
constraints on the stiffener depth to thickness ratio,
the selection of search procedure used is less critical.

Nature of the Multiple Extremal
Minimum Weight Designs

Physically, the existence of multiple minimal
weight designs in the design space is unlikely unless
the multiple extremals are constraint-induced; for
the cylinder weight diminishes monotonically with stif-
fener thickness, stiffener depth, and stiffener spacing.
Now the constraint boundaries to the stiffened cylinder
problem are probably highly non-convex since they in-
clude multiple buckling criteria. (One can observe a
simple boundary of this type for conical shells on page
511 of reference 15).
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TABLE I. (FIGURE 20)
SOLUTIONS FOR CASE 7 WITHOUT (d/t) LIMITS IMPOSED

AESOP

Search Combination ts tx t¢’ dx d¢ Lx 2¢' W TABLE
9, 2, 9, 2, 5, 2, 3 | .0304 .0276 .00002 .3879  20.0 3.229 1.316 | 682.5 | D1
5,2, 5, 2 .1090 .00959 .00020 .000008 2.007 2.469 20.0 1926 D2
6, 2 05785 1077 1077 1077 1077 1077 12.47 111020 D3
7, 2, 7, 2 .0226 .0302 .00794 .4187  2.542 7.451 .9304 || 684.4 { DU
b, 2, 4, 2 .1032 1077 .oooo1 1077 7.320 4.355 2.900 | 1820 D5
5, 2, .07795 .1322  .03189 .01691  .6738 2.711 .8651 || 1558 D6
CR 1217 (Ref. 9) 111 L7285 .940 0 0 8.57 3.84 1960

CR 1217 (Ref. 9) .0292 .ob4l  .0943  .718 810  18.2  1.h2 979

CR 1217 (Ref. 9) 114 3.56 400 0 1.64 42,0 11.6 2240
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TABLE II. (FIGURE 21)
SOLUTIONS FOR CASE 7 WITH (d/t) LIMITS IMPOSED

T

SearchAggggination E ts “x t¢ “x d¢ *x 1¢ v | TABLE
9, 2, 9, 2, 5, 2, 3|l .0300 .0335 .0501 .5017 1.048 10.94 1.311 831. D8
5, 2, 5, 2 .0245 .0321  .0617  .u618 1.277 10.28 1.013 819. D9
6, 2, 6, 2 .0254 .0289  .0562 U493 1.371 9.507 1.038 806. D10
7, 2 .0372 .0322 .0395 .5031 .9080 8.323 1.733 894, D11
b, 2 .0297 .0316 .0409 L4663 1.174 8.336 1.282 82k, D12
1, 2 .0256 .0307 .0568 .4339 1.180 9.398 .9767 813. D13




Figure 22 illustrates one possible form of a non-
convex constraint boundary problem in the case of a
hypothetical two-dimensional problem. Here, the perfor-
mance contours vary smoothly, but the constraint boundaries
involve a sequence of non-convex arcs, The forbidden
region is determined by the shaded region. In the problem
illustrated, the constraints introduce five possible mini-
mal solutions. The global extremal is the extreme left
minimal solution. Two typical exterior penaity function
convergence paths are shown in figure 22. In both paths,
the constraint boundaries are pierced early in the search.
At this stage in the optimization process, the exterior
penalty function procedure is concentrating on payoff
function improvement, and the constraint violation is of
secondary importance. In the Tower path, pursuit of
improving performance leads to Point A before increasing
weight on constraint violations results in a gradual
loss of performance to satisfy the active constraints.
This path leads to the global optimal at Point B. A
significant point regarding constraint violation is that
the constraint initiaily violated at C,and two other dinter-
mediately active constraints along arc CA, are no longer
active at Point A. A second typical exterior penalty
function path is illustrated by arc CD. Here, the con-
straint weights have been increased more rapidly than on
arc CA, and an inferior extremal is located at Point D.
Relaxation of the constraint weights at D will result in
further payoff function improvement along a path such as
DB.
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On a complex response surface or in a search from a
badly chosen nominal, convergence to the global extremal
may require several constraint weight relaxations. As a
matter of practice during this study the constraint weights
were reduced at least once on each problem.

It should be noted that when high constraint weights
are employed, the exterior penalty function method will
usually fail to find the global extremal of a constrained
optimization problem such as that illustrated in figure 22.
With high constraint weights, the search turns to follow
a constraint boundary as it is encountered. 1In conse-
quence, the nearest constrained extremal point is found;
this may or may not be the global extremal. Similar results
may be encountered when an interior penalty function tech-
nique is empioyed with low constraint weights. This may
well be the reason for some of the very high weight optimal
cylinder designs obtained in reference 9.

When the unconstrained payoff function response sur-
face itself possesses more than one extremal, successive
constraint weight reductions may or may not lead to the
global extremal. In such cases, the multiple extremal
procedure of reference 2 may be combined with the constraint
relaxation procedure in a search for successive minima.

It is apparent that the multiple "extremal" solutions
of figure 20 could be attributed to non-convex buckling
constraint boundaries. It will be shown in a later section
that these constraint boundaries do have the general
characteristics exhibited in figure 22 and that the vari-
ation in unconstrained performance along a 1ine such as
DB in figure 22 is essentially a smooth monotonic improve-
ment to the minimal weight design point.
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Comparison Between Interior and Exterior
Penalty Function Approach to
Stiffened Cylinder Design

In this section a serieg of direct comparisons between
minimum weight cylinder designs obtained by an interior and
an exterior penalty function optimization approach are
presented. The interior penalty function method is that of
Fiacco and McCormick applied through the Fletcher-Powell
unconstrained minimization algorithm as reported in refer-
ence 9. The exterior penalty function method employed is
that of program AESOP, references 1 through 3, which may be
utilized with any of the search algorithms of figure 19.
When using the exterior penalty function approach, the con-
straint weights were routinely relaxed once in each solution
as discussed in the previous section. In one particularly
difficult problem, the constraint weights were relaxed four
times. This problem is discussed in some detail below. All
exterior penalty function solutions obtained in this section
used a combination of searches.

M) =l9, 2, 9, 2, 5, 2, 3]

Case identification conforms to that of reference 9.

Each of the interior penalty function cylinder designs in
reference 9 1is considered; however, not all of the starting
solutions of reference 9 are employed in the exterior pen-
alty function solutions. Details of the results presented
in this section are given in Appendix C.
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Case 1-I, Three Load Cases, Cylinder Length = 165",
Cylinder Radius = 60". Load conditions for this problem

are:

1. Axial load 700 1bs/in., External pressure 0.0

2. Axial load 940 1bs/in., External pressure -2.
1bs/in?

3. Axial Tload 212 1bs/in., External pressure 0.4
1bs/in?

A summary of the results obtained for Case 1-1 is presented
in Appendix C, Table C1. As noted, two searches were made
on the computer to obtain convergence with a constraint
weight reduction between the two searches. The first search
consisted of 15 optimization cycles. (A cycle consists of
one application of the search algorithms specified). The
second search consisted of ten optimization cycles. The
search techniques used in each optimization cycle were
Random Ray, Pattern, Adaptive Creeping, and Magnification
in the combination defined above. Values of 10.0 were
arbitrarily selected as initial constraint weights for both
searches,

The final values of the design variables obtained by
the AESOP exterior penalty function, figure 23, and the
corresponding cylinder weight 226 1bs. indicates that the
AESOP solution has converged to essentially the same con-
figuration as shown on page 71 of reference 9 , (cylinder
weight of 231 1bs.). Table C2, Appendix C, presents the
detailed results obtained by AESOP for Case 1-I when the
final values of the design variables shown on page 71 of
reference 9 are used as the nominal values for AESOP.

It can be seen that a small performance gain is possible.
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Table C3 presents the results obtained by AESOP for
Case 1-I when the absolute values of all behavior vari-
ables were constrained to be less than or equal to 1.0
This procedure was followed in an arbitrary attempt to
force realistic circumferential stiffener geometries. The
major effect of the additional constraint was to alter the
dimensions of the circumferential stiffeners giving them
more realistic values of depth and thickness. This pro-
cedure is less direct than introducing a constraint on
(d/t). It should be noted that the critical mode shapes
obtained for this solution do not differ significantly
from the critical modes shown in Table C1. This would indi-
cate that the 0.0063 thick by 2.0 deep ring (d/t=318) is
expected to force certain critical mode shapes. This prob-
ably is an optimistic assumption in practice. Imposition
of the additional constraints results in a weight penalty
of 24.9 pounds.

To illustrate the presence of a Tocal extremal induced
by constraints, Case 1-1 was rerun using large initial
constraint error weights, (4.0 x 10%). The initial con-
trol vector was taken as the final vector from the sample
problem on page 162 of reference 9. The results obtained
are presented in table C4. It can be seen that the solu-
tion is constrained by the skin buckling for load case 2
with a minimum weight of 410 pounds. This problem was
solved above with constraint weights of 10.0 and, as noted,
a lower minimum weight cylinder of 226 pounds was achieved.
It should be noted that solution was simultaneously con-
strained by four constraint functiong; gross buckling, skin

buckling, panel buckling and longitudinal stiffener buckling.
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The inferior solution obtained when high nominal constraint
weights are utilized is constrained by only one constraint
funetion, skin buckling, and appears to be a clear case

of an inferior, constrdint induced minima.

Case 2-1' Three Load Cases, Cylinder Length = 165",
Cylinder Radius = 60". Load conditions for this probiem

are:

1. Axial Toad 1400 1b/in., External pressure
0.

2. Axial load 1880 1b/in., External pressure
-4, 1b/in?

3. Axial load 424 1b/in., External pressure
.8 1b/in.

Problem solution details are given in Table C5, Appendix C.
Cylinder minimum weight is 387 Ibs., figure 23. This com-
pares directly to the minimum weight of 389 1bs. reported
on page 78 of reference g.

Case 3-1, Three Load Case, Cylinder Length = 165",
Cylinder Radius = 60." Load conditions for this problem

are:

1. Axial Toad 2100 1b/in., External pressure
0.
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2. Axial load 2820 1b/in., External pressure
-6. 1b/in?

3. Axial Toad 636 1b/in., External pressure
1.2 1b/in?

Problem solution details are given in Table C-6, Appendix C.
Cylinder minimum weight is <37 Ips., figure 23. This com-
pares directly to the minimum weight of 4¢5 Ibs. reported

on page 81 of reference 9.

Case 4-0., Three Load Case, Cylinder Length = 500",
Cylinder Radius = 200". Load conditions for this probiem
are:

1. Axijal load = 2100 1b/in., External pressure
= 3. 1b/in?

2. Axial Load
= =20 1b/in

8000 1b/in., External pressure

N

3. Axial load
= Q.

n

5000 1b/in., External pressure

This problem was solved from two nominal starting points,
starting point 1 of reference 9 and the final solution
obtained from starting point 1 of reference 9. Minimum
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weights of 74252 pounds and 14332 pounds {Figure 23), res-
pectively, were obtained. Final cylinder details are given
in Tables C7 and C8 of Appendix C.

These results compare directly to a final weight of
21300 pounds reported on page 86 of reference 9, More
significantly, the final weight of 21300 pounds obtained
in reference 9 1is higher than the starting weight of
16200 pounds, yet, of necessity with the Fiacco and
McCormick procedure, both the final "minimal" weight and
the lighter starting weight must be feasible designs.

It should also be noted that this probiem was solved
from a second starting in reference 9. With an initial
constraint multiplyer value of rg = 1500 a minimal weight
of 26900 pounds was reported;with an initial multiplyer
value of rg = 375, a minimal weight of 14700 pounds was
reported. This last solution compares favorably with the
minimum weights of 14252 and 14332 pounds obtained by the
AESOP exterijor penaity function solution.

Case 5-1, Three Load Case, Cylinder Length = 2000",
Cylinder Radius = 200". Load conditions for this problem

are:

1. Axial load = 2100 1b/in., External pressure
= 1.0 1b/in?

2. Axial load = 8000 1b/in., External pressure
= -20 1b/in?
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3. Axial load = 5000 1b/in., External pressure
=9

This problem was solved from a single nominal starting point
and a minimal weight of 48097 pounds was achieved. It should
be noted that considerable difficulty was experienced in
obtaining this solution; the exterior penalty function con-
straint weights were relaxed four times. It is postulated
that the prime reason underlying these convergence diffi-
culties was the use of relatively low constraint factors.

In all exterior penalty function solutions of this report
starting factors of 10. were used. The range of final
cylinder weights covered is from 3.8 pounds to 48000 pounds.
Clearly, the constraint penalty factors should be related

to the payoff function values. It is suggested that studies
using the exterior penalty function procedure should employ
starting constraint factors approximating 1 per cent of the
anticipated performance value. The effectiveness of alter-
nate constraint penalty factor starting values was not in-
vestigated in the present study.

The one solution to Case 5 in reference 9 produced a
minimum weight of 50000 pounds. This compares closely to
the value of 48087 pounds above. However, in view of the
difficulties encountered with the exterior penalty function
solution, it is felt that a second solution to this problem
is required to verify the optimality, or lack of optimality,
of the result.

Case 6-I, Single Load Case, Cylinder Length = 38",
Cylinder Radius = 9.55". The single Toad case is:

Axial Load = 800 1b/in., Exterior Pressure = 0
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Two solutions were obtained corresponding to Cases 6-I and
6-1', pages 90 and 91 of reference 9. Minimum weights
attained by the solutions are 3.81 and 3.70 pounds, respec-
tively, Figure 23. This compares with 8.35 and ¢.20 pounds
in reference 9.

Case 7-1, Single Load Case, Cylinder Length = 291",
Cylinder Radius = 85.5"., The single load condition was

Axial Load = 800 1b/in., Extremal Pressure = 0.

This case has been discussed in detail in the section "Typical
Optimization Algorithm Behavior in Stiffened Cylinder Design”
where the recommended search combination produced a minimum
cylinder weight of 682 pounds, figure 23. Solutions in
reference 9 achieved minimum weights of 1960 pounds, 979
pounds, and 2240 pounds, depending on the interior penalty
function constraint factor, design variable bounds employed,
and, in the case of the 2240 pound cylinder, the absence of
longitudinal stiffeners. It should again be noted that the
nominal feasible design employed (1680 pounds) was lighter
than two of the final "minimum"weights reported in reference
9.

Case 8-1, 0, Single Load Case, Cylinder Length = 361",
433". The single Toad condition was

Cylinder Radius

12150 1b/in., External Pressure = 0

Axial Load

Starting from a nominal cylinder weighing 46840 pounds, a
minimum weight design of 38924 pounds was attained, figure
23. This compares to a minimum weight of 39400 pounds
reported in reference 9.
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Cylinder Design Summary

It is evident from the table of results in figure 23
that the present designs obtained by the optimization
procedure embodied in program AESOP converge with a
relatively high degree of reliability. The optimal
designs obtained are all superior to thsse obtained
previously, in some cases by a significant margin. This
is thought to be due to three factors:

(a) The use of multiple search algorithms

(b) The use of an exterior penalty function
constraint procedure

(c) The practice of using two runs with a
relaxation of the constraint weights
after each run

The solutions obtained confirm the applicability of the
optimization techniques contained in program AESQP to

at Teast one class of structural optimization problem.
These same optimization techniques have now been applied
successfully to problems in the fields of single vehicle
and two-vehicle combat performance optimization, reference
31; minimum sonic boom overpressure body shapes, reference
32; phased array antenna design, reference 33; aerodynamic
shaping, reference 34; liquid rocket engine combustor
design, reference 35; and overall vehicle synthesis,
reference 3.

Ray Search

The ability to perform a one-dimensional search through
the multidimensional design space between two points P1z&1
and Ppzap is an integral part of current versions of the
program of references 1 through 3. Figures 24 to 26 reveal
the constraint and performance function behavior along such
rays. Figure 24 illustrates function behavior between the
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WEIGHT (Pounds)

Tmprgye

Results Obtained [Results Obtaned] g:g:
CASE STIFFENERS in CR-1217 in AESOP CR
1217
Nominal | Final Nominall Final Rggu]t
1-1(1) | Inside 715 231 715 226 2%
1-1(2) | Inside 1000 230
1-1" Inside 715 293
1-0 Outside 715 240
1-1,0 Inside/Outside 715 235
1-1t Inside* 715 303
2-1 Inside 370 340 1
2-1" Inside 418 389 418 387 7%
2-0 OQutside 836 363
2-1,0 Inside/Qutside 746 358
3-1 Inside 835 445 835 437 2%
3-1 Inside 835 490
3-0 OQutside 836 468
3-1,0 Inside/Qutside 835 457
4-1 Inside 15900 | 14600
4-0(1) | Outside 16184 | 21300 16184 | 14252 2%
4-0(2) | Outside 44900 26900
4-0" Outside 44900 | 14700
4-0(A) ~ - = 21300 ] 14332 2%
5-1 Inside 124500 | 50000 124500 | 48097 4%
6-1 Inside 13.7 8.35 13.7 3.8 9.5%
6-1" Inside 11.8 4.20 11.8 3.7 12%
6-0' Outside 11.8 4.30
6-1,0' ]| Inside/Outside 11.8 3.76
6-0s Longitudinal 12.7 8.54
6-1s Longitudinal 12.7 8.40
7-1 Inside 1680 1960 1680 683 30%
7-1" Inside 1680 979
7-1" Circumferential 1680 2240
8-1,0 Inside/Qutside 46840 | 39400 46840 38824 2%

* Reduced modulus in second load case

** CR-1217 considers the problem to be converged
if the value of the function is estimated to
exceed its minimum by two per cent or less.
Note the two per cent in half the cases.

FIGURE 23.
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¢ = 48099 1bs.

o = [.112,,.1349,.01409,2.229,3.12,1.410,6.485]

AESOP)

¢= 50083 1bs.
a= [.112,.190,.0224,1.710,10.0,31.5,4.14]
(CR 1217)

e o e e g

FIGURE ¢4.

CASE 5-1 RAY SEARCH
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9L

¢ = 836.18

¢ = 1682
« % [.03,.0335,.05009,.50166,.1.0483,10.936,1.311] « = [.05, .1, .05, 1, 2, 8, 3]
(AESOP) NOMINAL ‘
% l
f/fep |
i
- 2.5 i
|
4, ~GROSS |
2.0 2000 1bs.
“
WEIGHT ="
1.5 m——T 1500 1bs.
————
—‘——__—-——
———_’—— i
SKIN 1000 1bs.
———

500 1bs.

N PANEL

FIGURE 25. CASE 7-1 RAY BETWEEN NOMINAL AND !
AESOP SOLUTION



¢ = 836.18

o« = [.03,.0335,,05009,.50166,1.,0483,10.936,1.331]

¢(AESOP)

f/f
/CR

2.5

—=- GROSS BUCKLING

¢.
o =

9
{

79
.0292,,0441,.0943,.718,.81,18.2,1.42]
(CR 1217) i
- JUS—Y

2,0 ... - 1000 1bs. . . - s —_ -
- ——msmmTm T T
i
f 1.5 ... .. 500 1bs. o i} ]
1 LONGITUDINAL STIFFENER BUCKLING SKIN BUCKLING
Y ARt LTI I — - B .
]
| |
| |
| S——— - . 5- —— — —_— R j

FIGURE 26. RAY BETWEEN CR-12d7 SOLUTION AND AESOP SOLUTION, CASE 7-I



present 48097 pound solution to Case 5-I and the 50083
pound solution reported in reference 9. It can be seen
that a set of multiple-arced constraint violations 1lie
between the two solutions and that an interior penalty
function procedure would be unable to proceed along this
multidimensional ray as a result of these violations.
Proceeding the 50083 pound design leftwards to the 48089
pound design constraint violations are encountered for

(a) Rib buckling in load case 2
(b) Skin buckling in load case 3
(c) Skin buckling in load case 2
(d} Rib buckling in load case 2
(e) Gross buckling in load case 2

Minimum weight is attained to the right of the 48089 pound
cylinder but is accompanied by four constraint violations.

A similar result is shown in figures 25 and 26 for
Case 7-1. Figure 25 illustrates function behavior on the
ray between the nominal design and the present 836 pound
design. Figqgure 26 presents behavior on the ray between
the reference 9 best 979 pound solution to this problem
and the present 836 pound design. It can be seen from
figure 26 that the solution shown by reference 8 is loc-
atly constrained by skin buckling.
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MULTIPLE EXTREMAL SEARCH PROCEDURE

The multiple extremal search procedure proposed in ref-
erence 1 has a straightforward basis. A multivariabtle
extremal problem is solved by any of the recognized procedures,
steepest-descent, second-order, random, or elemental pertur-
bation techniques. With the position of an extremal known,

a non-linear coordinate transformation which modifies the
response surface but not the response surface topology is
introduced. The transformation contracts an elemental "hyper
volume" of the feasible regiom in the vicinity of the known
extremal point and expands such an elemental volume at
points far removed from the known extremal point. The feas-
ible region boundaries are unchanged by the transformation.
It follows directly that the "“region of influence" of the
known extremal is reduced in size and that the region of
influence of a second extremal, if it exists, is increased
in size. The degree of the expansion can readily be con-
trolled.

If the degree of the warping transformation is suffi-
ciently high, the probability of a second muitivariable
search in the transformed coordinate space, Tocating the
first extremal becomes small provided a second extremal
point reasonably well separated from the first point exists.
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The multiple extremal feature of program AESOP was
demonstrated on Case 7-1 with limits on d/t (see Page 57).
In order to use the multiple extremal feature of AESOP,
it is first necessary to establish a warping origin in
the parameter space. The warping origin is taken as the
optimum design vector established in a previous run; this
extremal is then effectively "swept out" of the response
surface by the transformation. The exponent of the warping
transformation in this study was taken as 2.0. The final
control vector of the run presented in Table D8 was used
as the warping origin. Results obtained using the warping
transformation are presented in Table D14. (Note that this
design was obtained with d/t limits imposed). It cam be
seen that the final weight obtained by the multiple extre-
mal search, 838 pounds, is practically the same as that
obtained prior to introduction of the warping transfor-
mation,83T pounds.

In an additional effort to locate a relative minima,
Case 7-1 was rerun using a 246 pound cylinder as the
nominal. This run was made without the warping transfor-
mation. The results of this run are presented in Table
D15. The constraint on panel buckling is still too large
by about three per cent; additional running would elim-
inate this violation with no significant change 1in the
cylinder weight. A final weight of 835 pounds was achieved.
The 246 pound nominal was then rerun using the warping
transformation centered at the final control vector of
Table D15. The results obtained are presented in Table

D16.
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The weight of the lightest design obtained using
the warping transformation is within four and one-half
per cent of the weight of the lightest design obtained
without application of the warping transformation. An
additional run should significantly reduce the differ-
ence between the two solutions. This probably indicates
the existence of a single minimal point in the uncon-
strained response surface,

One objective of the present study was a demon-
stration of the multiple extremal search on a problem
having more than one extremal. Since this technique
appears to be unnecessary in thé case of stiffened
cylinder design, a demonstration of the technique on a
straightforward two-dimensional problem was undertaken.
The problem considered is that of finding the eigen-
values of a complex matrix. The method could readily
be extended to the general N x N complex eigenvalue
problem, a problem of some interest in the area of
structural dynamics and other engineering fields.

The 2 x 2 complex characteristic equation is

(agq + 3byq) - 2 ayp * Jbyo

a,y + jb :
21 21 (ay, + 3byy) (45)
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Here j=v-T and A is an eigenvalue of the matrix
[A = Lag, + 3bp,l (46)

Expanding the determinental equation (36)

A2+ CAx+D=0 (47)
where
C =Ry * Ag (48)
M A2
D =
A21 A2z (49)
and
Amn = %mn + men (50)
It follows that
A = -C+/CZ=4D o
7z (1)

This problem can readily be solved by multivariable search.

Suppose
A= a4 + ja2 (52)

The eigenvalues A are given by the points (a], a2) which

satisfy
Min (JA(A)]?) = Min (JA(a;.a,)|%) =0 (53)

This problem is solved below using the matrix
[AT = | (1-34) (1 + jo)

(0+ j
3) (0 + jO) (54)
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The eigenvalues of the characteristic equation of this

matrix are

A] =1 - jo and kz =0-3 (55)

Solutions to the eigenvalue problem above were
obtained by program AESOP using the adaptive search, an ele-
mental perturbation technique, in conjunction with the
"pattern" acceleration procedure. The feasibly region emp-

Joyed was defined by

apq < oy < oy where apy = oL, T -2

ALy, < @y < GHy Oyy = OHp = 2 (56)

The eigenvalue problem was solved from five starting points
both with and without warping. From each point the problem
was first solved without warping. The resulting extremal
point was then used as the origin of a second order warping
transformation (N = 2), and the problem was solved again from
the same initial starting point. The second search should
then have increased the probability of locating the second
extremal. In all five cases the second search successfully
found the second extremal. Figure 27 presents the results
and the starting points. Figures 28a and 28bdisplay conver-
gence from a typical starting point.

The example presented appears to confirm the practical-
ity of the warping technique at least on problems of moderate
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RESULTS OF THE FIVE MULTIPLE EXTREMAL SEARCHES

e s —— — o — —— — " — —— — — ——— —_— ——— —— —— = —— ————— — —— ]

CASE STARTING POINT EXTREMAL POINT

1 (0, 0) (1, 0)

1 (Warped) (0, 0) (0,-1)
________ e eI

2 (2, 2) (1, 0)

2 (Warped) (2, 2) (0,-1)

3 (-2, 2) (1, 0)

3 (Warped) (-2, 2) (0,-1)

4 (2,"2) (0,"1)

4 (Warped) (2,-2) (1, 0)

5 (-2,-2) (0,-1)

5 (Warped) (-2,~2) (1, 0)

FIGURE 27.
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4#— Unwarped Extremal Points

4#— Warped Extremal Point From (0, 1)

Starting Point
~

Starting Point

7
20—
Path In %arped Space
Path in
Unwarped
0 0] Space
I
-2 -2 . |
-2 0 -2 ~Z 9]

Search 1 - Unwarped

(a)

FIGURE 28.

-2
Search 2 - Warped About (1,0)

(b)

TYPICAL SEARCH PATHS



complexity (here, a fourth-order polynomial, eq. (44)). The
regularity with which both extremals were found is surpri-
sing. The technique merely increases the probability of
finding a second extremal; it does not guarantee that a
second extremal will be found if one exists. Clearly,
further tests of the technique are in order; equally clearly,
the multiple extremal problem is not intractable when the
elementary technique of reference 1 can be applied so
successfully.

EMPIRICAL DESIGN OF RING STIFFENED CYLINDERS

This section contains a comparison between stiffened
cylinder designs obtained from lTinear theory and »ring
stiffened cylinders obtained using empirical buckling
data. The program used for the empirical design of ring
stiffened shells is briefly described. 1In its present
form this program does not consider Tongitudinally stif-
fened shells or positive internal pressure loads. The
comparisons are shown in figure 29 and, therefore, omit
load conditions with internal pressure. It can be seen
from figure 29 that the cylinders designed on an empirical
buckling basis are between 1.50 to 3.50 times heavier
than those designed on the basis of l1inear theory. These
ratios would probably increase if the second 1oad case of
problems 1-1 to 5-1 were considered.

The program uses an empirical method of analysis
to design cylindrical or conical shell-type structures.
Statistically determined buckling coefficients are used
to compute the allowable loads. The program has been de-
signed to allow buckling coefficient data to be described
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EMPIRICAL DESIGN LINEAR
THEOQRY
CASE Load h B n } I-y Weight W* WEIGHT/Wx
Condition |
1-1 ] .1097 4,34 8 1 1.492E-3 703.2 226 3.10
1-1 3 .Q734 4.34 7 5.868E-4 489.6
2-1 1 .1389 4,34 7 4.,906E-4 898.4 257 3.50
2-1 3 .0932 4,34 7 1.448E-3 629.8
3-1 1 .1594 4.34 7 9.860E-4 1038.0 381 2.72
3-1 3 L1071 4,34 6 2.382E-3 729.7
4-1 1 .3358 13.16 7 .2092 23087.3 14252 1.63
4-1 3 L4472 13.16 7 6.452E-2 29367.0
5-1 1 .2925 10.53 3 .9472 93123.2
5-1 3 .3885 10.53 4 6.655E-2 103609.9 48097 2.16
6-1 1 .0501 6.33 6 1.275E-5 11.6 3.58 3.24
7-1 1 .1061 3.83 8 4,301E-4 1948.3 683 2.85
8-1 1 .4848 9.5 10 1.476 58295.2 38824 1.50
FIGURE 29. COMPARISON OF CYLINDERS DESIGNED USING EMPIRICAL

L8

BUCKLING DATA WITH LINEAR THEORY




in several different ways. Most of the statistically deter-
mined buckling data appearing in the literature can be
described by one of the forms available in the program. For
example, figure 30 compares the buckling coefficient for
axial compression versus R/t used by three major aerospace
vehicle manufacturers. The input statements of the program
to some degree permit the user to control the method used

to compute the allowable loads and the factor of utilization.

Applied Loads

Any combination of axial compression, bending, shear,
and uniform external Tateral pressure may be applied to the
shell. Any of the above loads may be zero.

The running load due to axial compression is computed

by
wAa = P/[ZnR] cos(&)] (57)

The maximum value of the running load due to bending is
computed by

Wg, = M/[ﬂR% cos(&)] (58)

a

The maximum value of the running load due to shear is
computed by

Ws, = V/(nRy) + 17/(27R}) (59)

a

The running load due to uniform external lateral pressure

is computed by
WQa = QR (60)

R] is given by

R1 = R - L sin(g)/2 cos(&) (61)
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The Elastic Modulus at room temperature (ERT) is input to
the program. A table is also input giving per cent of ERT
as a function of temperature so that the elastic modulus

at other than room temperature may be determined as a tabu-
lar function.

Elastic Buckling Stresses

The program has been designed to allow buckling coef-
ficient data to be described in several different ways.

Axial Compression. The program standard option
computes the buckling coefficient for axial compression

as given by Seide, reference 11, as
Cp = 0.606 - 0.546(1-8,) (62)

The elastic buckling stress for axial compression is then
found to be

CpEcos (&) 72
oA/n = ——5——— Z > ——=——= (63
B 6CAY1 12 (63)
for
z ———f;i===
<
6CA ]“U‘z

and simply supported edges, (see references 12, 13, and 14)
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the buckling coefficient for axial compression is

_ 36(1-u%)dﬂ22
=1+ A (64)

T

and the elastic buckling stress for axial compression is
then computed from
KyT2Eh2cos?(&)
= A (65)
12B2(1-u2)

UA/n

Alternatively, in a second option, the buckling coef-
ficient for axial compression, CA, is input to the program.
The user has a choice of describing the axial buckling
coefficient as a tabie function or as a polynomial. The
polynomial form adopted is

Na
- i,
Cp = z:Aais, Ny < 7 (66)
i=0

and the elastic buckling stress for axial compression will
be computed from

CaEcos(g)
op/n = (67)

In the third option the buckling coefficient for axial
compression is computed from

/ 2 2
- [12Y1-¢ CAZ : 7 > ™ (68)
72 GCA/1-U2

where CA is determined as above,and the elastic buckling
stress for axial compression is computed as

Ka
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KszEhzcosz(g)
op/n = (69)
12B2(1-n?)

In a final fourth program option, the buckling coef-
ficient for axial compression is taken from reference 11
as

Cp = 0.606 - 0.546 (1-8,) + 0.16 [ﬁ—E%iiél ] 0.3 (70)

and the elastic buckling stress for axial compression is
computed from

CnE COS(&) 2
A il
op/n = ———— 7> —T0 (71)
For
Z < ____Tr.z__,._
2
SCA 1-u

and simply supported edges, the buckling coefficient for
axial compression is found from

36(1-12) c; 72

Ky = 1 + ~ (72)

and the elastic buckling stress for axial compression is

computed from

Ka 2 E h? cos?(g)
GA/T\ = (73)
12 B2 (1-u?)
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Bending

The program standard option computes the buckling
coefficient for bending from reference 11 as

Cg = 0.606 - 0.443 (1-8,) (74)

The elastic buckling stre- for bending is then found to be

CB E cos(&)

VoWV

100 (75)
20

N ™

The value of cB/n is conservative for Z < 20.

In a second option, the buckling coefficient for
bending is input to the program. The user has a choice of
describing the bending buckling coefficient as a table

function or as a polynomial. In the polynomial form
NB
= i,
Cp = :E: Ag; 81 5 Ny <7 (76)
i=0

and the elastic buckling stress for bending is computed as

cg E cos (&)
= 22 - T rcl 77
OB/T’\ 8 ( )

The third option computes the buckling coefficient for
bending as

Kg = Z Cp (78)

93



where CB is determined as above, and the elastic buckling
stress for bending is computed from
K, m2 E h? cos?(g)

og/n = B (79)
12 B2 (1-12)

Shear Loads

The standard program option computes the buckling
coefficient for shear as given by Seide in reference 11 as

2 *3/u
. 0.6375 R® Z (80)
S R-|2

and the elastic buckling stress for shear is computed as

CS w2 E h?
o /n =
S 12 B2 (1-12) (81)

The value of cs/n is conservative for z < 40.

In a second option, the buckling coefficient for shear
is input to the program. The user has a choice of describing
the shear buckling coefficient as a table function or as a
polynomial. 1In the polynomial option

Ng
3/l+ i
c, =12 E Ay B s Ng < 7 (82)
i=0

and the elastic buckling stress for shear is computed as
CS 'Tl'2 E h2

OS/T] = —-——]2 BZ(]_UZ) (83)
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Uniform External Lateral Pressure

In the standard program option, the buckling coeffi-
cient for uniform external lateral pressure is taken from
reference 11 and the elastic buckling stress for uniform
external lateral pressure is computed as

Kn m2 E h?
o /n = P (84)
P 12 B2 (1-u2)

In a second option the buckling coefficient for
uniform external lateral pressure is input to the program.
The user has a choice of describing the pressure buckling
coefficient as a table function or as a polynomial. In
the polynomial option

Np
_ i
Ky = }E: Api I' Ny < 7 (85)
i=0
and the elastic buckling stress for uniform external
lateral pressure is computed as
2 2
s jn = Sp T EN (86)
P 12 B% (1-u?)
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Plasticity Correction

In the standard program option, the elastic buckling
stresses are not corrected for the effects of plasticity.
The allowable buckling stresses are set equal to the elas-
tic buckling stresses

g = a/n (87)

In a second program option the elastic buckling stresses
are corrected for the effects of plasticity. The following
procedure is used to compute the allowable buckling stresses.

If o/n > 9LE then o = TuA (88)
If o/n < oL then o = o/n (89)
If oL < ofn < SuE then o will be computed as
_ 9279
o = 7 (T-T]) + oy (90)
2 1
where
T] < Tx T2
and
N
oy = :E: Ali(c/n)1 N < 4
i=0Q
N
c AZ; (o/m) N« 4
2
i=0
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Ratio of Applied to Allowable Loads

The allowable buckling stresses described above are

used to compute the allowable loads and the ratio of
applied to allowable load as follows:

The

and

The

The

and

The
is

The

allowable axial compressive loads are given by
Wy = h op (91)
Pcp = 2T Wy Ry cos(E) (92)
ratio of applied axial Tload to allowable axial load is

P
Ry = 5— (93)
AT PR

allowable bending loads are given by

wg = h og (94)

Mep = ™ wWg R]2 cos (&) (95)

ratio of applied bending load to allowable axial load

M

R = —_—

B~ Mg (96)

allowable shear loads are given by

w. =ho (97)
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The ratio of applied shear load to the allowable shear load
is
R, = w__ /w (98)

The allowable uniform external lateral pressure load is
given by

Wp = N9 (99)
and

Qep = ¥g/R (100)

The ratio of applied pressure load to allowable pressure
load is

Ry = Q/Qcp (101)

Interaction of Combined Loads

In the standard program option the exponents used in the
interaction equation are given by

— 2 12

7 = [1 + 0.7(%) - 0.04 (%) ] ¥ B <o

Y = 2.0 % > 10

Yp = Y

Yo = ¥g = g = 1.0 (102)
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Alternately, the exponents yp, vg» Yg» Y, and Y, may
be input as data.
The factor of utilization is computed from
rn A pgTB o Ys Yo e Yp
1.0 = [igh) + (@ + | + (103)
or optionally as
YA Yg Yg Y
_ [Ra RB Rs Rpy P
1.0 = EU—) + (§8) ] + () (G (104)
The margin of safety is found from
M.S. = {{(1/U) - 1} (105)

Frame Stiffness Requirements

The required frame stiffness, EIy, is given by
Timoshenko, reference 15, for cylinders subject to uniform
external lateral pressure and axial compressive force as:
(NOTE: The spacing of the frames is assumed to be small
compared to the radius of the shell)

ay = Iy Ll:ﬂi% Where ly is the effective Iy
B hR when the shell is sub-
jected to the design
loads (106)

oy is obtained from

C.| + Cza + C3a] = C4¢] + C5¢2 (107)
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where

¢y = sA®

C, = A8 {A2+2n%) + sAa%n?[2(x%2-1)2+2(n2%-1)2+ BA2%2n2 - 2]
Cg = (n2-1)2 [A*+s(2x2%+n?)n?]

Cp = A*n?2 + s(2x% + n?)n* - s(3Ax% + n?)n?

Cg = A° + sAa®n®(2a% + n® + 1) (108)

Set m =1 and let n =2, 3, 4, . . ., so that the maximum
value of ay may be determined.

ln the aboveequations the parameters a, A, s hy, ¢], ¢2, and
P were determined from

0!.=-1—2-2—2- A=£n{-&
s = hy ill%il hy = h + (Ay/B)
2 * 2
o9 = Wl and R T %
«
P B o+p (109)

For the value of oy computed above to be the valid, the
following must be true:

U=1.0 (110)
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Hess, reference 16, gives a graphical method for
solving the above equations for . In the present study
the equations are solved numerically.

Weights
Shell weight is given by
NTS = ZvRLhP (111)

For frame weight, assume "z" section frames and flange
length to thickness ratio of 10 and a frame web flat
height of 20t. The frame area is approximately

- Ir
Ap = 40 /2474 (112)

Normally, the program uses the criteria that the two end
frames must provide "fixed" edges assuming that an end
ring stiffness to intermediate frame stiffness ratio of
20 will provide “"fixed" ends. With this assumption, the
total weight of the frames is approximately given by

WT ={(2o) (2) (40 /)4 (NOF-2) 40 /—lf—-}anP (113)

2474

The end frame weights are omitted in the present study.
Total weight is given by

= WT. + WT

WTroTAL F s (114)
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CONCLUSION

It is apparent that modern multivariable optimization
techniques are capable of soiving the class of structural
design problems considered in this report. Optimal designs
are achieved routinely in a reasonably efficient manner;
each solution obtained required the expenditure of approx-
imately three minutes' time on a high speed Targe-scale
digital computer (the CDC 6600) using a single load case.

The study results lTend support to the view that topo-
graphically complex constrained optimization problems can
be more reliably solved by sequential application of
several search algorithms than by the repeated application
of a single search algorithm. This premise underlies the
optimizing program AESOP which was employed in the study.
It is considered significant that the search combination
utilized throughout the major portion of the study consisted
of a random technique, an elementary perturbation technique,
and two straightforward search acceleration techniques.
Over the spectrum of problems considered in this study, no
advantage was perceived in the use of more organized tech-
niques such as gradient methods or second-order methods.
In point of fact, experience in the solution of both the
present problems and a variety of optimization problems in
other fields tends to support the view that as response
surface complexity increases, the selected search procedure
should be weighted towards the use of techniques such as
the random ray procedure.
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It would appear that the exterior penaity function
approach is well suited to solution of multivariable
optimization problems which involve non-convex constraint
boundaries. This characteristic of the exterior penalty
function technique is dependent on an ability to penetrate
constraint boundaries in pursuit of improved performance.
With non-convex constraints the improved performance can
often be retained provided the constraint boundary subse-
quently enters the region of improved performance.
Successful exploitation of the exterior penalty function
technique in the presence of non-convex constraint boun-
daries is somewhat dependent on the use of adaptively
determined constraint weighting factors and a willingness
to restart the solution using relaxed weights following
convergence to an initial constrained optimum.

No evidence of multimodal behavior in the unconstrained
response function (cylinder weight) surface itself was
detected. When the unconstrained response surface itself
possesses more than one extremal, the search techniques
applied here can be combined with a true multiple extremal
search procedure such as the topographically invariant
warping of program AESOP.

It is well known that a linear buckling analysis will
result in an unconservative design. This point is clearly
demonstrated by the present study; for minimum weight
designs are obtained by the application of both linear and
empirical buckling criteria. Cylinder weights obtained by
the two approaches differ by factors as high as 3.5 even
though in some cases the critical load case was not con-
sidered in the empirically based design. Inclusion of this
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load case can only lead to higher weight empirically
designed cylinders. It is accordingly recommended
that the input of practical buckling criteria be con-
sidered in future studies of the present type. It is
also recommended that future studies incorporate
realistic geometries on stiffener members.

The successful application of multivariable
search techniques to the stiffened cylinder design
problem encourages their further application to struc-
tural design. Ultimately, one seeks a method capable
of practical application to large-scale general purpose
structural analysis programs such as the National
Aeronautics and Space Administration NASTRAN program.
Further development of the multivariable search pro-
cedures may be required before such an approach becomes
practical with today's computers. On the next generation
of computers such as the CDC 7600 or possibly the STAR
computers present techniques would appear capable of
optimal structural definition through general purpose
codes provided efficient multiple analysis techniques

are employed.
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APPENDIX A.

Development of the Analysis of the Stiffened Cylinder

A.1 Introduction

In this appendix all the equations needed to analyze the stiffened
cylinder are presented. These include the overall buckling analysis of
the cylinder as well as the buckling, stress and yield analyses of the skin
and stiffeners.

It is well known that there is a large discrepancy between the
buckling failure loads for monocoque cylinders which are predicted by
classical buckling theory and the failure loads obtained in tests. However,
it has been found recently that this is not necessarily the case for
stiffened cylinders, reference 17. Linear theory is used here but it has
been found that this may not apply in some cases, reference 18. The
importance of including the effect of eccentricity of the stiffeners
has been pointed out both experimentally, reference 19, and analytically,
references 20, 21, and 22. Earlier investigators have also treated this
effect analytically, references 23 and 24. 1In the analysis used here,
eccentricity effects are included. This analysis follows closely that

of Fliigge in reference 24.

A.2 Stress-Strain Relations

The skin of the cylinder is assumed to be in a biaxial state of siress.
The axes of elastic symmetry are in the longitudinal and circumferential
The x axis is in the longitudinal direction and the ¢ axis is

directions.
With these assumptions the stress-strain

in the circumferential direction.
relations in the sheet are

E

X
g = — (e + p, € )
X 1-uxu¢ X ¢ 0
E
9% = 1‘uxu¢ (“x ey * e¢)
Txe = 8 Yy (A1)
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The stiffeners are assumed to be in a uniaxial state of stress so
that the stress-~strain relations are

Oyg = EXS €y (A2)

c = E €

¢s ¢S ¢

in the longitudinal and circumferential stiffeners respectively.

A.3 Strain-Displacement Relations

The reference surface of the shell is taken as the midsurface of the
skin., With the z axis taken positive inward from the reference surface
and u, v, and w being the displacementsof the reference surface respectively
in the positive x, ¢, and z coordinate directions, the strain displacement
relations are taken to be

_oau o, 0w
€x 3x X2
1 2
= LoV _ W Z 9 W (A3)
€ R 50 R-z R(R-z) ;;7
= L QU (Rezy v 2w (2 + 2
Txé R-z 93¢ R 7 ax 3%x3¢ 'R ' R-z

where ex, €p> and Yx¢ are the strains at a point in the shell ey and

e¢ are assumed to be continuous in the skin and x and ¢ stiffeners,
respectively. These relations may be derived in a geometric manner as
done by Flugge, pg. 212 of reference 24, or by reducing the linear
three-dimensional strain displacement relations in cylindrical coordi-
nates, reference 25. The latter is done by assuming the displacements
vary linearly with the depth of the shell, reference 26, and by setting
the transverse shear strains and the extensional strain in the z direction

to zero.

The displacements of a point in the cylinder corresponding to these
strain midsurface displacements are

A2

B

e

ES



- m
u = U-Zax

SRz, .z

Wos oW

(see Figure Al).

The rotations of the normal used in the above displacements are

o = ¥ 4 1w
X R R 3¢
w = W
¢ X

9 = ..a_m_x = l. oV azw )
X ax R ‘ax IXdP
(A5)
3 2
6 = l ._.m_(h. = .1- 8 w
$ R 3¢ R 3x3¢

A.4 Force Resultants

The force and moment resultants per unit length are obtained by
performing the appropriate integrations of the stresses over the thickness
of the skin and then adding to these the corresponding force and moment
resultants per unit length in the stiffeners. The force and moment
resultants per unit lenqth in the stiffeners are obtained by dividing the
resultant forces and moments by the stiffener spacings.

The extensional forces and bending moments in the stiffeners are
obtained by performing the appropriate integrations of the extensional
stresses in the stiffeners over the areas of the stiffeners. The stiffeners
are assumed to carry no shear load; so they have no contribution to the shear

- A3



force resultants, but they are assumed to have a twisting moment resultant.

The angle of twist is assumed to be the same as that of the normal to the
skin. The torsional stiffnesses of the stiffeners are obtained from an
approximate curve for data given by Crandal and Dahl, reference 27, for
torsion of bars of rectangular cross section. Thus, the force resultants
are obtained by substituting the strain displacement relations (A3) into
the stress strain relations (A1) and (A2), then substituting the resulting
stress displacement relations into the following formulas and performing
the integrations:

+ts/2 . dx+ts/2
R-Z X
N, = (T) Oy dz + i’;’ I%s dz
—tS/2 ts/z
+ 2
+tS/2 . d¢ ty/
N= o dz + -2 o, dz
$ o Ly ¢S
-ts/Z ts/2
+ts/2 .
-Z
Neg = e (ZR") dz
—ts/2
(A6)
+ts/2
N¢x = Tx¢ dz
-tS/2

Ad



+t /2 d ft /2
M = B:EQ z dz + jéi o.. 2 dz
X % YR %, xs
-ts/2 tS/2
+ts/2 . d¢+t5/2
- 9 d
M¢ = c¢ z dz + N Tps z dz
-ts/z ts/2
+t /2
® R-z GIx Jx
Meo = Txo TR A2 T oy
-ts/2
+t /2
S G, J
M¢x = Txo z dz - —%;Jk e¢
-tS/Z

The above expressions apply for stiffeners on the inside of the cylinder.

For stiffeners on the outside of the cylinder the limits of integration on

the stiffener integrals, the second terms, must be changed to go from

- (dX + ts/2) to -t /2 and - (d¢ + ts/2) to - ts/2 (see Figures 17 and A2)
8y and e¢ are the angles of twist of the normal to the skin, given in
section A.3. Jx and J¢ are the section constants for a rectangular cross-
section in torsion. These correspond to a polar moment of inertia and are
approximate by the expression,

J=cab3 b < a

where ¢ is given by

¢ = - 0.285 e 0-49(a/B) 4 ¢ 316
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and a and b are the cross sectional aimensions of the stiffener, tx and dx’
and t, and d,; b is taken as the dimension of smaller magnitude. After
making the substitutions described above, performing the integrations, and
neglecting terms of the order of the thickness of the skin divided by the
radius and square of the depth of the stiffeners divided by the square of
the radius with respect to 1, the force and moment resultants can be written:

D 2
3u 1 av W 1y, 87w
NX—(H51+HX)8—X+HV-§‘B_¢-—Hv-R_-(erx--Rq_);x_Z'
3u 1 av 59 W
N, = Hv-a—x—+(Hsz+H¢)ﬁ—$-(Hsz+H¢ 1+ §
D 2 2
2 Pocyy 1 3%
- (g5 H¢ (e¢ + ) 2 ;—E
¢
2
S au 3V 3 W (A7)

- S 3u v K
Nx¢ =R 3 T Sox * E? aX3¢

N =.S_.§E_+5.3.Y.__K._32W
¢X R 3¢ 3xX R2 3IX3
D D
= Sy vy
My = (Hy e R 5% YT
D 2
2y 3w v 3w
- (D, +H p.%) =5 -
1 X Fx 22 E?' a¢2
e p2
= v 2 9 w
M¢ H¢ R 5% (R + H¢ (e¢ + ) 3
2 3 2
3w 2 o 1 8w
- D 2= -(D,+H (p°+ )) KA.
Vo2 2 ¢ Yo E?' a¢2
A6
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S T——

32W )
9X9d¢

T
= 2K X 3V
Mx¢ - (R * R ) (ax +

3u K av (.2.E+Ii) 2
R R R 93x3¢

where the constants in the above expressions are given in terms of the
material properties and the dimensions of the stiffened cylinder by

E, t E. t
X s s
H = H = Ti————
sl “HyHg s2 =My
Y - XS X ‘dxl " - Egs tg Idgl
X L4 ¢ Ly
3 3
E t E t
. _X_s - s
09 12{T-u u¢) ) I%(l-uxu¢)
3
0 ) EX u¢ tS E¢ My tS
v 12(]-uxu¢7‘ 12(1-uxu¢7
E u, t E pu t
- X s . ¢ Y s
Ry i-uxu¢ [-uxu¢
6t
S = Gts K = v
G, J G, J
Ty = ﬁ . Ty = 2 (A8)
¢ ¢ X
2 2
o _ 44746 ld ]t + 3t
Px 12
2 2
2 _ 4d¢ + 6 |d¢l to + 3t
Py T2
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- X S .
e, = % 5 + inside
~ outside
d + ts
= +
e¢ +
3 2 2 3
I 2 [d¢( + 4t d¢ + 3ts ]d¢l t ot
¢ —_—

The effects of the eccentricity of the stiffeners are seen in thne
e ,and o 3, which have a positive sign when the stiffeners

terms ex, 6 o

are on the inside and a negative sign when the stiffeners are on the outside.

A.5 Prebuckle Forces and Stresses

It is assumed that when the cylinder is loaded there is a uniform
change in length and a uniform change in radius. This implies that u, v,
and w are independent of ¢; w and v are independent of x; and that u is
a linear function of x. Applying these assumptions to the force displace~
ment relations (A.7), the forces in the cylinder are

- u W

Ny = (Hsl * Hx) ax i, R
Ju s W
N¢ = H\) X (HSZ + H¢ 1+ —-R—)) R (Ag)
D

= 1y 3u

My = (Hx & R ) ax
2
D e

= - (2 oy W
M¢ (R + H¢ (e¢ 3 ) R
Nx¢ = N¢x = Mx¢ = M¢x = 0
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By substituting these into the equilibrium equations, reference 24,
page 209, the internal forces may be obtained in terms of the applied loads.
The result is

N, =-N
(A10)
N¢ = - pR
where N is the applied axial compressior load per unit length of circum-
ference, and p is the applied external pressure per unit surface area.

With the assumptions about the prebuckled deformation, the midsurface
prebuckle strains are obtained from the strain displacement relations as

T -

exp 5% ° op (A11)

[y}

1

1
o=

By equating the expressions for the Torce resultants in terms of the dis-
placements with the values of the force resultants in terms of the external
forces and identifying the strains, the following expressions for the mid-
surface strains are obtained, after neglecting terms of the order of the
depth'of the stiffener divided by the radius with respect to one:

o H, PR = (Ho, + H ) N
Xp 2
(Hgp + HO(Hgp + H)) - H (A12)
o HoN = (Hgp + H) pR
op 2
(Hsl * Hx)(HSZ * H¢) - B,

Substituting these into the stress-strain relations (A.1) for the skin,
the expressions for the stresses in the skin are obtained:

H H
[+ %) - IN+ w22~ pR
HsZ Xe X Hs]
(A13)

o = - L

Xp H H
S X )

(T P+ 52 - u,

Hs1 Igz X "¢

A9



H H
g N = Dy wy = +B—’5-]—)J PR
S

P
Lol _the
op ts H H
U+ O+ - o, u
Hsl HsZ xTe

The expressions for the stresses in the ribs neglecting terms involving
the depth of the stiffener divided by the radius with respect to one are
obtained by multiplying the stiffener modulus by the corresponding value
of the midsurface prebuckle strain. These are

O%sp - Exs €xp

(A14)

$sSp ¢S ¢p

A.6 Buckling of the Cylinder and Skin

An expression for the critical buckling load of the cylinder is
obtained in terms of two integer parameters representing the buckling mode
shape. The lowest buckling load is then obtained by searching the buckling
loads obtained from a large number of possible mode shapes.

The expression for the buckling load is obtained from the determinant
of a set of homogeneous equations. These are obtained by substituting into
the buckling equilibrium equations, in terms of displacements, an assumed
solution which satisfies these equations and simple support boundary condi-
tions. The displacement functions contain the two integer parameters

representing the mode shape and arbitrary constants.

The buckling equilibrium equations are obtained in terms of displace-
ments, by substituting the force resultants, in terms of the displacements,
into the buckling equilibrium equations in terms of forces. The buckling
equilibrium equations used are those given by Flugge, reference 24, page 422,
but contain only the buckling force terms recommended by Hedgepeth and Hall,
reference 17, page 9. With the changes required because of the different
coordinate system used here these equations are
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X X
- TR 39 = 0
N oN oM oM 2
1% P 1 2y 1 % oty
Ros ' X - E?'a¢ ~®Rwx Nz =0 (A15)
ax
2 2 2 2
o M 3 M 3 M
7 *R X 3§_2£ + R 2X *RN
2 3%X36 3¢ 5% ¢
2 2
2 3w 9 W
- NR® = - pR (%~ + w) =0
3x a¢2

where N is the applied axial compressive force per unit length and p is the
applied external radial pressure per unit area.

After substituting the force displacement relations (A7) into these
equations, the buckling equilibrium equations in terms of displacement are
obtained. These can be written in the form:

R(E__'_ﬁx__)_z_u +5 1 _a_z_u + (EV__ + _S_) o%y
H H R H H X9
s2 s2 X s2 2 s2 s2
_H\) E:i R(HLG D] )33W _ K_ i 33W = 0
Hgp 3X Hp % 7 HR™ 3 o &% 5X362
H e 2
o) B v (et (- b
s2 s2 3¢
(A16)
T 2 2 H
SR Xy 23V MR 37V ¢y 1 3w
4+ (2= + ) - = - (1 + ) = =
HsZ HSZR ;;? H52 ;;7 Hsz R 2¢
H, e 3 D 3
ST S G R Ry Ry O
s2 R™ 3¢ s2 s2 s2 X3¢
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H\) 2!+(HXEX_DZ)RBU+ Ka o u
HsZ 0 HsZ HsZR ) 3 HSZR 3Xa¢
H T 3
1 av 3K v X T 3%y 6 ¢ 3V
(1+4%) = &Y _ 22y + + 2
Hsz R 99 H Hs2 Hsz 3X 3¢ s2 E7 3
2
D H o 2
2 1 3 W
-2 + (e + =) M
HgoR Hep 0 R R3 292
2D T T 4
.._’_.i__2.+}£_;K_-}-}dl_x__-f.}__l_‘L)-I azw
s2 s2 s2 s2 X 3¢
3 2
D H 2« 4 D H, o 4
2 1 3 W 1 X "X 3 W
gt g, ) A - (e R Y
HsZ HsZ ¢ R E?‘ 3¢ HsZ s2 ax
H e 2 2
I R e T B
s2 s2  ax s2 3¢

The assumed displacements which satisfy the above equations and the simple

support boundary conditions are

u = A sin ne cos ax
v = B cosn¢ sin ax
w = C sinn¢ sin ax

where for the complete cylinder

= =
A= T m 1,2, . ..
n = n n = 0,1,2, ...

and L is the length of the cylinder.
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For a cylindrical plate (the skin between stiffeners)

mm
A = == m = 1,2, ...
Ly
n = %?LB n = 1,2, . ..
$

After the displacements are substituted into the displacement buckling
equilibrium equations, these equations can be written in the form:

= ] N
¢ G2 €3 (A 0
c C.. + NRa % c < B - 0 (A18)
12 ‘2t R, ‘e =
NRx 2
T Cag * o=+ HP—(n -1) \C 0
| s2 s2 __J

where the C's are given by

2
- 1 X 2 S n
C = - R (- + Xy Al . 22— Do
N HsZ HsZ HsZ R
H
C =_(_.\)_+§._)n>\
12 H52 H52
c =-E.\“_A+R(erx_ D])}\3+L ln_i
13 H52 H 2 H_-R H52 R2
H H, e D 2
Cow =~ 2o+ R (22X - 2,3+ X A (A19)
31 HsZ HsZ Hs R HsZ R2
c =-(1+;L(1-fi))n2_§3_+5&_)>\2
22 Hsz R H52 H52
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H H e 3 D T 2
3K v X\ AN
Cow ==(1T+729 3 & (28 2. G v o Xy2n
23 HsZ R HsZ EE_ HsZ Hsz H52 R
D2 o 2 2
Can = 2 ( + t(e, + %)) D
33 HsZR s2 ¢ R E?
T 2
-(2_3_-}-%.K_.+H_X_+_L);\2.‘l
HsZ s2 s2 se R
3 4 2
D H o D H
2 2 1 x "x 4
R o R = D L ) R
HsZ s2 ¢ R3 HsZ Hsz
H e
-1 - "o
R 1+ . (1 + R))

Since the values of the applied loads are known, a ratio between the
axial load and pressure can be calculated. Letting

p = aoN

and setting to zero the determinant of the coefficients of A, B, and C in
the last set of equations the expression for the critical axial load is
obtained. This is

i p—
- + -
(FN" - B+ VB 4 AC (A20)
s2 cr 28
where
A= oo R e P o R
_ 2 2
B = [(Cy Cpp = Cqp7) + (Cyq G35 - G35 C4d1 R A
# (Cyq Con = Cnl) a (02 = 1) (A21)
11 Y22 -~ Y2/ e \n
A4
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C = Gy Gy C33 + Cyp Cr3 C3y + Cy3 Cyp Cp

2 ¢

C19% C33 - C13 Cap Cpp = Cpa” Oy

For each combination of the parameters m and n there are two possible values
of (N/Hsz)cr' The one which has to be used as critical is the one with
smallest magnitude and having the same sign as the applied load N. The
critical buckling load is obtained by finding (N/Hsz)cr for a large number
of values of both m and n and then selecting the lowest magnitude value
out of all of these.

For the special case when N = 0 the critical pressure must be found.
This is given by
-C
e (A22)
H 2 2

The above analysis is used for gross buckling, panel buckling, and
sheet buckling. For gross buckling all the constants are calculate as
given in the C's and the full length of the cylinder is used. For panel
buckling, the terms which contain the properties of the circumferential
stiffeners are set to zero and the length of the cylinder is taken as the
circumferential ring spacing. For skin buckling, all terms containing
stiffener properties are set to zero, n 1is changed to apply tc a cylin-
drical plate with a width of the longitudinal stiffener spacing and the
length of the cylinder is again taken as the length between circumferential
stiffeners.

A.7 Longitudinal Stiffener Buckling

The critical buckling stress for the longitudinal stiffeners is
obtained by applying a solution for the critical buckling stress of a f]at
rectangular plate to several different possible assumed modes of buckling
of the stiffener, In all the possible assumed modes the longitudinal
stiffener is assumed to be simply supported on three edges and free on the
fourth. The critical buckling stress for such a flat plate is given by
Bleich, reference 28, as
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2 2
n® Exs (52 [(gb + 0.425] (A23)

% 12(1-v2) @

The notation has been changed here; t is the thickness of tne plate (i.e.
the width of the stiffener), d the width of the plate (i.e. the depth of
portion of the stiffener under consideration), and % the length of
stiffener under consideration.

The first failure mode to which this expression is applied is in the
situation where the circumferential stiffeners are either on the opposite
side of the cylinder from the longitudinal ones or where they are non-
existent. In this case d is taken as dx’ the full depth of the stiffener,
and ¢ s taken as L, the full length of the cylinder.

The second mode is where the circumferential stiffeners are on the
same side of the cylinder as the longitudinal ones and are the deepest.
In this case the critical buckling stress of the longitudinals is taken as
that of a plate with depth dy» the full depth of the longitudinal stiffen-

ers, and a Tength 2_, the Tength between circumferential stiffeners.

X?

The third mode is where the circumferential stiffeners are on the
same side as the longitudinal ones but are not as deep. In this case one
would expect the stiffener to buckle in a manner coupling the material
between the circumferential stiffeners with the material above the circum-
ferential stiffeners. To obtain an estimation of the critical buckling
stress two cases are considered. One assumes that the portion of the
material between the circumferential stiffeners does not buckle but the
outstanding portion does. In this case the formula is applied to a plate
of the dimensions of the depth ¢of the outstanding portion and the length of
the entire cylinder (dx - d¢ by L). The other case assumes that the
material between the circumferential stiffeners does buckle with the out-
standing portion of the longitudinal stiffener but that the circumferential
stiffeners force nodes in the buckling of the longitudinal and these notes
occur at the location of the circumferential stiffeners. The buckling
stress in this case is taken as that for a plate and d equal to the full
depth, dx' of the stiffener and & equal to Lys the circumferential
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stiffener spacing. This is the same as the case where the circumferential
stiffeners are deeper than the longitudinals.

A.8 Circumferential Stiffener Buckliing

Similar situations are encountered with the buckling of the circum-
ferential stiffeners as with the buckling of the longitudinal stiffeners.
Here, however, an additional mode of buckling is encountered (see TablesAl
and A2). The external stiffeners not only can buckle when they are
compressed, but due to their curvature can also buckle when they are
expanded.  An expression for the critical circumferential strain in the
skin of the cylinder, or at the edge of the stiffener, is obtained (in
Section A.9) by doing an assumed mode solutijon of the buckling problem.
This expression is

2 1 2+20-9) (c+y2)y

(
12(1-v8) 1+ 27 + 0

t
Cocr T 0{%)

(A24)

2 2
(1 + 2n2(1-0)) ¢ + (2n%(2-9)-1) S+ (%= 1) %73 + ...

—
1+ (B oy

2
3-4n 2
3 (7) ¢

7 +

where d is the depth of the stiffener portion in question; and ¢ is the
ratio of the stiffener depth, d, to the radius of the unsupported edge of
the stiffener; ¢ is a positive number if the stiffener is inside and nega-
tivé if the stiffener is outside; and n is the number of full waves in the
circumferential direction.

With the circumferential stiffeners on the inside of the cylinder, ¢
positive, the value of €scr is negative for all values of n and increases
in magnitude as n increases. This means that inside circumferential
stiffeners can buckle only when the cylinder contracts under load.

With the circumferential stiffeners inside the cylinder and the
longitudinals outside or non-existent the critical buckling value for e

. écr
1s obtained with n = 0.
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With both the circumferential and the longitudinal stiffeners inside
the cylinder and with the longitudinal stiffeners deeper than the circum-
ferential ones, the circumferential stiffeners are physically restrained
from buckling into a smaller number of half waves than the number of spaces
between longitudinal stiffeners. Since €scr increases in magnitude as n
increases, the critical buckling value for this situation is obtained by
using for n the number of spaces in half the circumference of the cylinder.

In the situation with the circumferential stiffeners deeper than the
longitudinal ones two values of €ycr ATE obtained. One is for the un-
supported portion of the circumferential with d = d¢ - dX and n = 0. The
other is obtained as above, for the supported stiffeners, for the full depth
of the stiffener assuming that nodes are forced at the locations of the

longitudinal stiffeners. This is similar to the case of the longitudinal

stiffeners.

With the circumferential stiffeners outside, z negative, €scr is
positive for small values of n and increases in magnitude as n increases.
When n becomes large enough € scr becomes negative and then as n increases
the magnitude of €scr decreases while the value remains negative. The
magnitude of € pcr decreases until for some value of n a minimum is obtained.
Thus the circumferential stiffener can buckle for small values of n when the

cylinder expands, positive, or can buckle for large values of n when

€ocr

the cylinder contracts, ¢ negative.

¢cr

For the case of external circumferential stiffeners with the Tongi-
tudinal stiffeners inside or non-existent, the critical positive value of
€ocr is obtained with n = 0, and the critical negative value is found by

searching for the lowest magnitude negative value of ser

With the longitudinal stiffeners also on the outside and deeper than
the circumferential the circumferential stiffeners are again physically
restrained from buckling into a smaller number of half waves than the
number of spaces between the longitudinal stiffeners. A value of €ser is
calculated for n equal to the number of spaces in half the circumference
n-= nR/2¢. If this value is positive then this is the critical value for
an expansion of the cylinder. If it is negative there is no critical value
for an expansion of the cylinder. Several possibilities exist for the
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negative buckling value. If the above value of € ser is positive then the
negative value is the one given by the minimum magnitude value found for the
unsupported stiffener, since this value has a larger number of circumfer-
ential waves than spaces between stiffeners. If the value for n = nR/z¢

is negative then there is a choice between this value and the value

¢cr|' The one which has the larger value of n is used. The
reasons for this are as follows: if n = =R/2 is the largest then a
smaller n is physically impossible; if the n for minimum le¢cr|
then this gives smallest l€¢cr| for Sscr negative and is physically
possible.  For the case of all external stiffeners with the circumferential
ones having the greater depth the problem is again split into two parts, one
an unsupported circumferential stiffener with depth d, - dx and the other
a stiffener with the full depth d¢ , assuming nodes at the location of the
Tongitudinal stiffeners. Values are then obtained for each case in a

minimum |e

is larger

manner similar to that described above for external stiffeners. Two
results are then obtained and compared to find the critical value.

In this treatment n is considered as a continuous variable instead
of integer as it actually is and no arguments about the compatibility of the
mode shapes are made. Introducing these restrictions would increase the
buckling values so that the treatment used is conservative.

This buckling solution does not apply where the circumferential
stiffener is thick compared with its depth. This is because the assumed
simply supported boundary condition does not apply. In situations where
the outstanding portion of the stiffener has a depth to thickness ratio of
less than ten the yield 1limit is substituted for the buckling limit.

A.9 Solution of the Circumferential Stiffener Critical Buckling

Strain

An approximate solution is obtained for the buckling of a circular
plate with a large hole in it. The plate is assumed to be simply supported
at one edge and free at the other (see Figure A3). The simply supported
edge is the edge which attaches to the cylinder and thus must have the same
displacements as the cylinder. The critical buckling parameter is taken as
the tangential strain on the simply supported edge. The solution is
obtained using an assumed mode variational method.

A19



The variational formulation of the problem of elastic stability is
given by Novozhilov, reference 26, page 173, as

L al® g = s R£2)

In the cases in which the initial stress state can be determined using

classical theory, this is such a case, A(Z) is given in cylindrical

coordinates as

(2) _ E 1 N .
A = m {T-_\-)- (b2 ) - Zb] } r dr de dz
1 ( 2 2
+ L o + 4° 12 12 ° 12 12
> {or (me+mz) oy (wr""“’z )+0’Z (wr+ E’)
- 2[1;6 u);_wé Tr; wr',mz' + ng wéwé] } r dr de dz
where
t = ] ] 1
by ep teg toey
- 1 ' ' ) UL l 12 '2 2
b] €r €g + €€y + €4€7 = 7 (ere + €z + € )
and
.. au c_ Yoav' o, ou W'
€y ar ° N TR 2 T Wz
S VU WYL C_oau' L o' 1 ow' . av!
= 2L LIt = AL Vel 2N 2.
ro ar T r Tr%e * Srz "3z Yorc Sez°F 35 T 32
1 aw' v c_oau' ow' voav' L vt 1 su
200 = ¥ 39 57 0 Mg T 5 ar ? 2w, = YT T v 5o

A20



The primes denote the buckle state and zero the initial state. By the same
type of procedure as used for the derivation of the strain displacement
relations in the cylinder the above strain displacement relations can be
reduced to strain midsurface displacement relations. Thus, by assuming

the displacements vary linearly with depth, the transverse shear strains are
zero, and the normal strain is zero, the strain displacement relations reduce
to

e to= 2u 24!
r ar arz
et o= Loavlout oz 1 3l awl
] r 3 rorotr ar
et o= v vt 1 aut 2z pwl 1wy
re ar T r r o r ‘ar ae 38
o 'o= Loawl o oW vooavh vt 1 auf
r r 30 * Y8 ar ° Yz ar ' r T 26

Note that the displacements in these expressions are the midsurface displace-
ments and not the displacements of a point as in the previous expressions,
also u, v, and w' are the displacements in the r, 6, and z directions and
are not the same as the u, v, and w for the cylinder.

The stresses in the plate prior to buckling are given by Timoshenko,
reference 25, page 59, in terms of a radially inward pressure at the outer

edge as b2 ( 2 2
o . ro-a
o = -p 2y o =)
r° {b° - a“)
0°=_pb_2_(r2+a2)
8 2 (b? - ad)
Tro. T Tz T Tez T 9z = 0
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P is the radial pressure. These may be transformed to be in terms of the
tangential sprain at the edge r = b, Eb » by using the stress strain
relations to solve for P in terms of Eg and substituting the result

into the above expressions for the stresses

r
0.° = (A25)
r a2 + b2 + v(a“® - b2)
2
2 — a
b Ee (] +;‘—2-) E¢S
c,° =
] a2 + b2 + v(aZ _ b2)

The following set of buckling displacements satisfy the displacement

boundary conditions:

A (b-r) sin ne

=
1]

These displacements are then substituted into the strain-displacement rela-
tions and the resulting expressions along with the prebuckle stresses are
then substituted into the expression for A(z). When the integration is

carried out and 5[A(2)] is set to zero (s Réz) is zero for the problem
since the forces are constant on one edge and the displacements are
constant on the other), reference 26, pg. 172, the following expression is

obtained for the critical eq:

- t2 [az + b2 + v(a2 - b2)
Ee = - 2 2 ]
12(1-v") b

2 22
(n?-1)2 1n §-+ 2n? (1—n2) 9§§-+ n2 (n ; 2(1 V))(b > 3

L 7 : 1 (A26)
l—’—%n— (6% - &%) + (b2 + &% (n-1)) 1n %
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Now (9550 is set equal to ¢ and the expression is expanded in terms of
this quantity. The result of doing this and setting the critical E; equal
to the critical strain in the cylinder is the expression:

2
(2 + 2(1-v)(z + 3))

e T 5
ocr 12(1-y°) (1 + 2 + %)
2 3 4
(e2n2(1-) + (202(2-v)- 1) Sz ¢ (2102 (Bp - Ep) 4 .o

2 2
1+ (Zﬂg:l) z + gﬁ%ﬂ— 2+ ...

Specialization of this solution in two limiting cases, for which solutions
are available in the literature, is given in Appendix B.

A.10 Yield Failure

The principal stresses in the skin are given by Oxp and 4p (A13).
It is assumed that the yield criterion for the cylindrical shell skin
material is of the following form, reference 29.
o 2 o o g 2
sz = (R L Xp_ (= < (A27)
“%0a aB 190 l°¢os 9508
where
o0a = x0T the Tongitudinal tensionr yield stress in the skin if Oxp >0
%0« = %x0C the Tongitudinal compression yield stress in the skin if
pr <0
%08 = S40T the circumferential tension yield stress in the skin if
Sp > O
.08 ° %40C the circumferential compression yield stress in the skin
if Sop < Q
a8 T KT constant defining yield envelope in first quadrant pr >0
and a¢p >0
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constant defining yield envelope in second quadrant Oxp < 0

Kag ~ SCT
and c¢p > 0

Keg = KcC constant defining yield envelope in third quadrant Oxp <0
and %4p < 0

Keg = KTC constant defining yield envelope in fourth quadrant Oxp 0

and o¢p <0

For the case of an isotropic material that behaves identically in tension
and compression with yield stress 90D Eqs. A27 when specialized by the
following substitutions:

9%0T °x0c "~ %0T T 9p0c ~ 0D

K = ]

aB

reduce to the distortion energy yield criterion

2 2 2
Oxp -cxpc¢p+ o%p < 0D (A28)

The stiffeners are in a uniaxial state of stress so the stresses (Al4)
must satisfy the yield conditions:

9%S0C = 9xsp = 9xS0T
(A26)

95S0C = Ypsp = 94S0T

where the subscript x refers to the longitudinal stiffener; ¢ refers to
the circumferential stiffener; O refers to yield; C refers to compression;
and. T refers to tension.
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TABLE A1. SELECTION OF CIRCUMFERENTIAL STIFFENER BUCKLING MODE (

¢’cr

e, ). = CONTRACTION

d° 21;_)22- |d¢|-<-|dx| d n (E¢)cr‘
Sides
Inside + | Yes N/A d¢ n=0 (E¢)cr = (£¢)cr‘fn=0
0ut?1‘de - | Yes N/A dy n= :; €lcr T (£¢)cr|n=n*
Inside + No Yes d¢ n= % eer (%)crln=nR/z
. - = R Y
Outside No Yes d¢ n 'E— | if (E¢)cr|n=nR/z¢ > 0 then use (€¢)cr|n=n*
$
d¢ n = n* | otherwise use (e¢ er|n=max(n,n*)
Inside + | No No d¢'dx n=0 (5¢ cr if|(e )“)l > 1(: )(2)‘ then
d¢ n= % (e¢)‘(:r) (e¢) (e¢)<(:r) otherwise (E¢)cr= (E¢)c(::-)
Outside - | No No |d, [-]d, | n=n* (e')(l)
. 1R (2)
d¢ n= E; if (E¢)cr =R/, > 0 then (£¢)cr |n=n*
dL n=n* | otherwise (ed&)an =max(n,n*) ,
(e¢)él) if (e )(])I > ](e )(Z)I then (s (e¢)ér)
(e )82 [ otherwise (c);,. = (%)g)
d
= ; d, > 0 inside n* positive integer such that (e,) . <0
R-d - $ ¢
¢ "2 and [(e,) is a minimum
d l 3 cr”n=n* '

s
R+|d’|+ -5

dt < 0 outside
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TABLE A2. SELECTION OF CIRCUMFERENTIAL STIFFENER BUCKLING MODE (€¢)cr -‘ﬁ EXPANSION
d¢ g?sgsite ld¢|ildx| d n (Eqs)cr
OQutside - | Yes N/A d, 0 (e)cp (%)crln -0
Outside - No Yes d¢ -E% (E¢)cr| (eo)cr xR > 0
*o
otherwise no bucang fn this case

Outside - | No No ld,1-14,1 0 (e ¢)£1)} i (%)g) <0 then (c,), = (c¢)£1)

R (2 . (2

d, -:: (£¢)cr) if (%)cr) >0 then
(e )y = min ()8, (e )2
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FIGURE Al.

DISPLACEMENTS AND ROTATIONS OF A
SHELL ELEMENT
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FIGURE A3. CIRCUMFERENTIAL STIFFENER
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APPENDIX B

Verification of the Circumferential Stiffener
Buckling Solution

Two limiting cases for €ocr 2TE obtained. One is for the washer
mode of buckling with no circumferential waves. The other case is for a

large number of waves. These cases are checked with existing solutions,

With n = 0 and neglecting terms involving the depth of the stiffener
divided by the radius, z, with respect to one, the expression for the washer

mode is
Coep =" (3)2 — () (B1)
ber o0 -v9)

With n large and again neglecting ¢ with respect to one the express-

ion for e¢cr is

= t 2
for T @ T (- + 301 - v)) (B2)

Substituting the expression for the critical strain in the washer
mode {B1) into the expression for the stress in the radial direction (A25)
and obtaining the value at the supported boundary, r = b, the following
expression is obtained:

-E 2
ey = —2— (5 ¢ (2)

rcr 12 (1 - VZ)
Writing ¢ as d/R and making the definition D = E¢st2/12(1 - V%) this
expression is
o = - 2D
roR
The negative sign signifies that the stress is compressive. The above value
agrees closely with the exact solution for the axisymmetric case done by
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Meissner, reference 30, who obtain a value for the coefficient 1.86 instead

of 2.
By substituting the value of €gep TOr D large (B2) into the expres-
sion for the tangential stress, o, (A25) at the supported edge, r = b, the

following expression is obtained:

-E 2 2 2
o, = ——— (H) (@B -+ 5 (2)
8 2 d 2
12(1 - V%)
n is expressed in terms of the half wavelength, &, as #R/2 . Substituting
for ¢ and n the following expression is obtained:

(¢

E A% 2 2
- s &7 @ o+ 8w
acr . 2 d 2
12 (1 - v9) T

If the value v = .3 is used this becomes

2
- n 2 2
o = L____(:c_) ((.cl) + 0.425)
ecr 2,d 2
12(1 - v°)
which is the same as the expression for the critical buckling stress for a

rectangular plate {see Section A.7).
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APPENDIX C ~ DETAILED SOLUTIONS FROM EXTERIOR PENALTY FUNCTION METHOD

Case 1-1
tg ty £y d, d, %, %, W
Final .02179] .03047 .00629 .3608 2.0 7.2379 .8768 225,93
Initial .099 .06 .06 .5 .5 6.0 3.0 714.92
U. B. .5 .5 .5 2.0 2.0 10.0 10.0
L. B. .0001 .0001 .0001 .0001 .0001 .0001 .0001
£/%cr L = 165, R = 60.
L-C. ! 2 3 Aluminum T= 101
G.B. .7893 1.0044 .2450 E'= 10 x 10¢ v = .333 o, = 50,000.
P.B. .8545 .9918 .3782
S.B. . 9153 1.0026 .3380 Wave Numbers
LRB. .7195 1.0046 ,2102 ic Gross Panel Skin
CRBU 0 0 0
M
CRBL  |-g427. -17874. | -1240. 1 14 - 8
5.Y. .4041 .5863 .1164 N 9 31 1
LRYU ~.4057 ~.5664 -.1185
LRYL .4057 .5664 .1185 M 14 1 10
CRYU L1261 .2676 .1857 2 g
CRYL  |-.1261 -.2676 | -.1857 ? 24 !
LOADS M 13 1 7
3
Le N P N 9 97 1
1 700. 0.
2 940. -2,
3 212. .4 TABLE Cl
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Cage 1 ~ I (B)
tS tx ‘t¢ dx d¢ 'Q'X g’¢ W
Final ,0198921 .03097 .00851 .36516 |1,91928 |7.1545 .7971 227.72
Initial |_,02000 .03120 .00907 .36500_ j1.92000 |{7.1500 .7920 230.39
U. B. .5 .5 .5 2.0 2.0 10.0 10.0
L. B. L000001! .000001 | .000001 | .000001 | .000001 | .000001 [.000001
/8., L = 165. R = 60.
L.C. 1 2 3 Aluninum Y = ,101
G.B. 1768 _.9999 .2449 E = 10 x 10° v = .333 o =50,000.
P.B. 1724 .9084 .3665 ¥
S.B. .9247 .9999 .3481 Wave Numbers
LRB. L7170 .9999 .2097 L LC Gross Panel Skin
CRBU 0 0 0
M 13 1 9
CRBL -4189. -9150. -563.8 1
S.Y. .4058 .5891 .1172 9 30 1
LRYU -.4080 -.5690 -.1194
LRYL .4080 .5690 L1194 M 14 1 1D
CRYU .1232 .2691 .1658 2 ; o N
CRYL ~.1232 -.2691 -.1658 N
LOADS M 13 1 7
3
LC N )
N 9 115 1
1 700. 0
2 940, -2.
3 212 .4 TABLE C2




€3

Case 1 - I (Aa)

(With |CRBL| < 1.0)

Ty t < t @ dx d ¢ 9'x 2 " W
Final .02345] .03198 .04912 .3936 .8847 8.305 .947 261.8
Initial .099 .06 .06 .5 .5 6.0 3.0 714,92
U. B. .5 .5 .5 2.0 2.0 10.0 10.0
L. B. .0001 .0001 L0001 .0001 L0001 .0001 .0001
£/8 L = 165. R = 60.
L.C. 1 2 3 . Y = .101
G5 Aluminum
.B. .8022 1.0032 .2894 E= 10 x 10° v = .333 oy
P.B. .8868 1.0020 .3993
S.B. L8979 1.0039 .3258 Wave Numbers
LRB. .7206 1.0020 L2114 c Gross Panel Skin
CRBU 0 0 0
CRBL  |[-.1428 -.3024 -.02114 L M 11 1 8
S.Y. .3727 .5338 .1083 N 10 29 1
LRYU ~.3761 -.5229 -,1103
LRYL .3761 .5229 .1103 M 12 1 10
CRYU .1045 L2212 .01546 2
CRYL ~-.1045 -.2212 -.01546 N 10 22 1
LOADS M 1 1 7
3
LC N P N 5 84 1
1 700. 0.
2 940. -2.
3 212, 1 TABLEC3

= 50,000.
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CASE 1

Using Large Constraint Weights 4 x 106

£ ty t¢ d, d¢ ﬁx $¢ W
Final 04649 .1052 .0870 .3341 .3225 5.86 2.48 410.15
Initial 05455 .1198 .1381 .3238 .3659 5.84 2,57 489,78
U. B. 5 .5 .5 2.0 2.0 10.0 10.0
L. B, 019 .05 .05 0.0 0.0 .05 .05
L = 165 R = 60
L.C. 1 2 3 Y = .101
G.B. .8833 .9537 .8130 E = 10X106 v = ,333 o, = 50000
P.B. .4155 .5065 .1423 Y
S.B. .8725 . 9994 .3144 Wave Numbers
LRB. L0291 .0407 .0085 c Gross Panel Skin
* CRBU 0.0 0.0 0.0
CRBL  |-.0698  |-.1395  [-.0120 1 " 2 ! 2
S.Y, .2278 .3271 .0658 N 15 31 1
LRYU -.2289 ~.3193 -.0669
LRYL ,2289 .3193 .0120 M 12 1 3
CRYU .0698 .1395 .0120 2
CRYL -.0698 -.1395 -.0120 15 25 1
LOADS 3 M 1 1 2
LC N P N
1 7 40 1l
700 4]
2
940 -2
3 212 0.4 TABLE C4
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CASE 2-I'

ts tx te dx dg Lx L9 W
Final 03392 05 0% 52871 1.2609 10.00 1.2078 387.40
Initial | .037 L0513 0525 519 129 9.68 1.16 417.57
U.B. 5 .5 .5 2,0 2.0 10,0 10.0
L,B. .019 .05 .05 2.0 £2.0 .05 .05
L = 165. R = 60.
v = 101
E = 10.0 x 106y = .333 oy = 50,000.
L.B. 1 2 3
G.B. .80999 1.00311 | .26824
D.B. .88770 1.00281 | .38644 WAVE NUMBERS
S.B, .90988 1.00228 | .33503
LRB .70131 .97611 | .20553 LC GROSS PANEL SKIN
CRBU 0. 0. U.
CRBL -66.296 |-142.74 |-9.3358 M 10 1 8
LY. 49254 70885 | . 14285 1
LRYU -, 49642 | -.69094 [-.14548 N 5 24 N
LRYL .49642 .69094 | .14548
CRYU 14186 30543 | ,01998
CRYL 2014186 | -.30543 |-.01998 , 10 1 2
LOADS N 9 19 1
L.C. N P " 1 1 6
3
1 1400. 0. 4 8 1
2 1880. -4,
3 424. .8 TABLE C5
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CASE 3-1

te tx ty dy dy x % W
Final 04119 05892 01885 55986 | 3.0 3.6238 1.3289 436,72
Initial .1 1 1 .5 .5 3.0 3.0 835,26
U.B. 5 .5 .5 3,0 3.0 10.0 10.0
L.B. 0000001 |.0000001 |.0000001 |-3.0 £3.0 0000001 |.0000001
L = 165. R = 60.
y = .101
T.C. 1 2 3 ]
G.B. .77665 | 1.00271 | .24373 E=10.0 x 10° wu = .333 o, = 50,000.
D.B. 75647 89355 | 30150
S.B. 91861 | 1.00322 | ~34I7T WAVE NUMBERS
LRE .71905 | 1.00352 | .21018 1C GROSS PANEL SKIN
CRBU . 0. 0.
— M 11 1 6
CRBL —6486.11 |-13838.17 |-938.718
S.Y. .62969 .91323 .18154 1
LRYU —.63249 | -.88272 |-.18488 N 7 25 1
LRYL 63249 88272 | .18488
CRYU 19471 L41541 | ,28179 M 11 1 8
CRYL Z.19471 | ~.41541 [~.28179 5
LOADS N 7 19 1

L.C. N P M 10 1 5

1 2100. 0. L A . . T

2 2820. -6.

3 636 1.2 TABLE C6




L

Case 4 - 0 Starting Point 1

ts tx t¢ dx d¢ gx g¢ W
Final .1438 .1820 .2158 | -1.750 | -2.3028 | 39.96 4.6015 | 14252.6
Initial .15 .20 .489 -1.84 -1.89 35.0 4.58 16184.3
u. B. 1. 20. 40. 4. 4, 40. 20.
L. B. .00001| .00001 .00001 | -4. -4, .00001 | .00001
L = 500 R = 200
L.C. 1 2 3 A luminun 4 _ 101
G.B. .9904 9720 .8009 B = 10 x 106 v = .333 S = 50,000.
P.B. .5593 .9841 .8732 Y
S.B. .3265 .5621 .6643 Wave Numbers
LRB. .2224 1.008 .5457 IC Gross Panel Skin
CRBU .0358 .7257 1443
CRBL -.0335 -.6792 | -.1350 1 M ! . !
S.Y. .1869 1.036 L4645 N 6 48 1
LRYU -.1901 -.8618 | ~-.4665
LRYL .1901 .8618 .4665 . 13 1 14
CRYU .3584 .7257 1443 2
CRYL ~.3584 ~.7257 | -.1443 N 24 6 1
LOADS 3 1 8
Le N P ? 9 27 1
1 2100. 1.
2 8000, -20.0
3 5000, 0 TABLE C7
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Case 4-0 Starting Point B

tg t, ty d, d¢ % ,9.¢ W
Final .1470 .1849 .1503 -1.8194 | -2.6810 | 40.0 4.84 14332.41
Initial .216 .315 1.98 -1.38 -0.865 23,7 8.57 21300.00
U. B. 1.0 20.0 40.0 4.0 4.0 40.0 20.0
L. B. .00001} .00001 .00001 | -4.0 -4.0 .00001 .00001
L = 500 R = 200
L.C. 1 2 3 ) ¥y _ .101
'7 1 Aluminum =
G.B. 9224 - 9092 75 E = 10 x 10° v = .333 q, = 50,000,
P.B. .5209 .9353 .8145 Yy
S.B. .3386 .5823 .6899 Wave Numbers
LRB. .2294 1.042 .5631 C Gross Panel Skin
CRBU .0360 .7232 ,1443
CRBL ~.0868 Z.1745 | -.3481 1 M 1 . 7
S.Y. .1841 1.027 L4581 N 6 48 1
LRYU -.1873 -.8508 -.4596
LRYL .1873 .8508 L4596 . 14 1 13
CRYU . 0360 L7231 .1443 2
N 0 5 1l
CRYL -.0360 -.7231 -.1443
LOADS M 3 1 8
3
LC N
ul N 9 26 1
1 2100. 1.
2 8000, -20.0
3 5000. 0 TABLE C8




6)

CASE 5-I

ts T t¢ dx d¢ 2y L¢ W
Final .11224 .13488 .01409 2.2286 3.1201 1.4105 6.4853 48097
Initial | .25 .25 .3 2.0 10. 25. 4, 124500
U. B. .5 20. . 5. 10.1 100. 10.
L. B. .1 .02 .01 0.0 0.0 1. 1.
L = 2000, R = 200.
L.C. 1 2 3 Uy = 72000. = _101
- 6 —
G.B.  }.0028 1.0028 |0.8713 E = 10.3x10 = .333
P.B. D.0050 0.0190 0.0119
5.B. D.2018 0.6969 0.4732 Wave Numbers
LRB
D.1220 0.5407 0.2981 Ic P Sanel Shin
CRBU 0.0 0.0 0.0
CRBL  |-95.738  |-18282.9 |-3743.0 L ¥ 1 3 1
S.Y. D.1730 0.8872 0.4259
LRYU Fo0.1762 ~0.7805 }-0.4304 3 0 1
LRYL n.1762 0.7805 0.4304
CRYU h.0294 0.5614 0.1149 M 41 3 1
CRYL L0.0294 -0.5614 [-0.1149 2
N 8 0 b
LORDS M 31 3 1
1cC N P 3
1 2100, 1. N 9 0 1
8000. -20
5000. 0. TABLE C9
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CASE 6~I

50000.

ts Ty t¢ dx d¢ 2x L ) W
Final 013634 015188 | .000533 | .20760 _ |.24387 19178 | 2.000 3.8135
Initial |.04 04 04 ~35 25 1.0 1.0 13.723
U.B. 1.0 1.0 1.0 2.0 2.0 5.0 2.0
L.B. 0000001 | .0000001] .0000001] 2.0 2.0 0000001 | .0000001
L = 38.0 R= 9.55
y= .101
= 7 = =
— T E = 10.5%10 u= .333 oy
G.B. 1.00660
P.B. 01564
= SRSl WAVE NUMBERS
LRB 69918 L.C. GROSS PANEL SKIN
CRBU 0
. 6 4 1
CRBL 21012.93 M
S.Y. 55959 1
LRYU ~1.00215 N 8 0 1
TRYL 1.00215
CRYU 31958
CRYL — 31958
LOADS
T.C. S ?
1 800. 0.

TABLE C10.
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CASE 6-1'

ts tx t¢ Ay d¢ Ay 2¢ W
Final 00998 01244 | .00027 11348 | 1.0085_ | 1.6519 23791 | 3.700
Initial 028 .05 .05 .1 11 1.5 .25 11.787
U.B. T.0 T.0 1.0 7.0 T0 5.0 7T
L.E, . 0000001| .0000001] .000000L] .05 705 .0000001] .0000001L
L = 38.0 R = 9.55
y = .101
L.C. 1 E = 10.5 x 106 u = .333 6. = 50,000.
G.B. 1.00418 ¥
D.B. 299432
S.B. .74864
LRB 1.00065 L.C. GROSS PANEL SKIN
CRBU o
CRBL -1021695. M 13 1 7
S.Y. 1.00300 1
LRYU -1.00390 N 7 21 1
LRYL 1.00390
CRYU .32948
CRYL -.32948
LOADS
L.C. N P
L 800. 0. TABLE C11
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CASE 7-1

tg t, N d, d, % L W
Final 03044 L0276 ,000022 .3879 20.9 3,229 1.3162 | 682,54
Initial |05 .1 .05 1.0 2.0 8.0 3.0 1681.74
U. B. 10.0 0.0 10.0 20.0 20.0 50.0 20.0
L. B. L 0000001 0000001 |.0000001 |.00000001(.0000001 }.0000001 |.0000001
L = 291 R = 95.5
L.C. 1 2 3 Y . .101
G.B. 1.0028 - - E= 10 x 10° v = .333 o, = 50000
P.B. .2173 ——— o Y
S.B. 1.0051 ———— ——— Wave Numbers
LRB. 1.0071 —— o LC Gross Panel Skin
CRBU -——= ---
— 10 M 27 1 2
CRBL -1.5x10 i -== 1
S.Y. ——e —— N
,4145 6 62 3
LRYU -.4146 ——— o
LRYL L4146 —— ~== M _— — -
CRYU .1375 — - 2
CRYL 0.1375 ———- ~== _— — —
LOADS M - -_— —
3
1C N P N _ — —
1 800 0.0
2 ————— - s -
3 e o TABLE C12
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€Ll

CASE 8-I,0

tg t, ty a, d, % 2, W
Final 2155 3238 0789 |- 3.68617 9.9965 | 48,7457 7.3671 | 38824
Initial 231 ,340 .268 - 3.92 3.86 17.7 7.17 46840
U. B. 1.0 10,0 10,0 - 0.5 10,90 80.0 20.0
L. B. 019 .05 .05 -10.0 .5 .05 .05
L= 361 R = 433
L.C. 1 2 3 Y = .101
G.B. - _ -
1.0041 E = )9,5x10° v = 333 o, = 50000
P.B. . 4992 -- --
S.B. 1.0028 —_ _— Wave Numbers
LRB. 1.0057 -- - IC Gross Panel Skin
CRBU 0.0 - - N
M
CRBL -3.57x103| -- -- 1 3 ! 6
5.Y. .6384 -- -- N
LRYU ~.6408 -- — 10 ! !
LRYL .6408 - - M
CRYU .2000 - - 2 == — —
CRYL -.2000 - - N
LOADS M - - -
LC N P 3 N
1 12150 0 o - -
2 -——— [Eep——
3 TABLE 13




APPENDIX D
SOLUTION TO CASE 7-I USING SEARCH COMBINATION (9,2,9,2,5,2,3)

t] t, ty a, dy % Ry W
Final .03044 .0276 .000022 .3879 20.0 3.229 1.3162 682.54
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 | 1.0E-7 | 1.0E-7 |1.0E-7 | L.0E-7 | L.OE-7 | L.0E=7
L = 291.0 R= 95,5 %% = 910000.0
L.C. 1 NUMOPT = 7 Oy = 50000. Y = 0.101
G.B. T 0008 METHOP = 9,2,9,2,5,2,3 B = 10.5E6 v = .333 %ﬁz- 14.1
P.B. .2173
S.B. 1.0051 Wave Nunbers
LRB t.0071 1c Gross pPanel | Skin
CRBU 0
CRBL  |-1.5E+10 1 M 27 1 2
S.Y. 3145
LRYU = 4176 6 62 1
LRYL .4146
CRYU -1375 SEARCH TECHNIQUES USED:
CRYL -.1375 Random Ray (Method 9)

Pattern (Method 2)
LOADS Creeping (Method 5)

Magnification ‘(Method 3)
LC N P

La

1 800 0

TABLE D1.
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (5,2,5,2)

s tx t¢ dx d¢ 'zx 2.¢ W
Final .10904 .00959 .00020 .000008 [2.00737 [2.46866 20.0 1925.84
Initial 0.05 0.1 0.05 1.0 2,0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1,0E-7

de
L = 291.0 R= 095.5 Te = 10000.0
T oy = 50000. = 0.101
L.C. 1 NUMOPT = 4 Y 1 ax
G.B. 1.00367 METHOP = 5,2,5-2 E = 10.5E6 v = 0.333 tx = .00089
P.B. .37317
S.B. .36318 Wave Numbers
LRB 1.1E-9
LC Gross Panel skin

CRBU 0
CRBL 6.1E+8 1 M 48 . 1
s.Y. L1467
LRYU -.1467 14 0 1
LRYL .1467
CRYU -04879 SEARCH TECHNIQUES USED:
CRYL -

-04873 Creeping (Method 5)

Pattern (Method 2)

LOADS
LC N P TABLE D2
1 800 0
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (6,2,6,2)

ts tx t¢ dx d¢ 2x !¢ W
Final .05785 1.0E-7 1.0B-7 1.0E~-7 1.0E-17 1.0E~7 12.4752 1020.25
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
L = 291.0 R = 95.5 —%‘% - 1
T.c. 1 NUMOPT = 4 Oy = 50000. Y = 0.101
oD, TPy METHOD = 6121612 E = 10.5E6 v=10333 £ a1
P.B. .00369
S.B. .00369 Wave Numbers
LRB .00100
IC Gross Panel | Skin
CRBU 0
— M
CRBL .0921 1 15 11 11
S.Y. .2765 pper Limit
LRYU -.2765 30 100 15
LRYL .0921
CRYU -.0921 SEARCH TECHNIQUES USED:
CRYL Quadratic (Method 6)
* Excessive constraint Pattern (Method.z)
LOADS violation NOTE: The results presented -are.those
ic 5 P obtained from the first run. The
TABLE D3 second run was aborted due to a
1 800 0 singular matrix.
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SOLUTION TO CASE 7-1 USING SEARCH COMBINATION (7,2,7,2)

ts tx t¢ dx d¢ zx &¢ W
Final .02260 .03022 .00794 .41874 2.54229 7.45131 .93042 684,44
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
a¢
L = 201.0 R=095,5 “g¢ = 321.0
R 1 NUMOPT = gy = 50000, Y =o0.101
G.B. T odos * METHOP = 1020742 E = 10.5E6 v = 0.333 Tx = 13.8
P.B. .6944
S.B. 1.0178 Wave Numbers
1.012
LRB 0123 LC Gross Panel Skin
CRBU 0
CRBL ~1.09E+6 1 19 1 8
S.Y. .4362
LRYU ~.4386 10 40 !
LRYL .4386
CRYU L1320 SEARCH TECHNIQUES USED:
CRYL ~-.1329 Davidon (Method 7)
* Excessive constraint Pattern (Method 2)
1.0OADS violation
LC N P TABLE D4
1 800 0




SOLUTION TO CASE 7-I USING SFARCH COMBINATION (4,2,4,2)

t, t, ty d, a, % 1¢ "
Final .10321 | 1.0E-7 .00001 1.0E-7 7.32029 | 4.3547 [2.89986 1820,4
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1,0E-7 1.0E-7 1.0E~7 1.0E-7 1.0E-7 1.0E~7

4
L = 291.0 R = 95,5 E% = 732029,0
T.C. 1 NUMOPT = 4 dy = 50000 Yy = 0.101 ax
G.B. 1.1174% METHOP = 4,2,4,2 E = 10.5E6 v = 0,333 3? = 1
P.B. 1.0110
S.B. .14867 Wave Numbers
LRB
.0019 LC Gross Panel Skin

CRBU 0 M pper Limi
CRBL -8.9E+11 1 30 1 2
S.Y. .1550
LRYU -.1550 12 0 1
LRYL L1550
CRYU .0516 SEARCH TECHNIQUES USED:
CRYL -,0516 Steepest-Descent (Method 4)

Pattern (Method 2)
* Excessive Constraint Violation
LOADS

LC N P TABLE D5,

Sa

1 800 ]
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SOLUTION TO CASE 7-I USING.SEARCH COMBINATION (5,2,3)

ts tx t¢ dx d¢ Lx 2¢ w
Final .07795 .13221 .03189 .01691 .67382 2.71116 .86511 1558.30
Initial | 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
L = »291.0 R = g5.5 %%- 21.1
L.c' 1 NUMOPT = 2 Uy = 50000- Y = 0-101
= — ax
P.B. 1.0227
S.B. .03301 Wave Numbers
LRB .0000
00003 IC Gross Panel | Skin
CRBU 0 [Ipper ILinit
CRBL <94.37 1 M 50 1 3
S.Y. L1957 N
LRYU -.1967 15 0 1
LRYL L1967
CRYU il SEARCH TECHNIQUES USED:
CRYL =+ 06007 Creeping (Method 5)
Pattern (Method 2)
* Excessive constraint Violation
LOADS
LC N P
TABLE D6.
1 800 0




SOLUTION TO CASE 7-I USING SEARCH COMBINATION (1,2)

2 2
ts tx t¢ dx dqb 'y 8 W .
Final .00941 .08609 1.0E-7 .96933 20.0 .03294 16.679 255.08
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E~7 1.0E-7 1.0E-7 1.0E~7 1.0E=-7
das
L = 291.0 R= 95.5 EE-- 20,0E+7
2 gy = 50000. Y= 0.101
2.C. = NOMOPT = zy = 10.5E6 v = 0.333 9% o 31.15
G.B. 1.1308* METHOP = 1,2 : : tx ‘
P.B. .0227
S.B. .01480 Wave Numbers
. 8 — b
LRB 00084 Lc Gross Panel Skin
CRBU 0
M
CRBL -1.8E+17 1 13 6 1
.Y, 1.1095 N
LRYU -1.110* 7 19 3
LRYL 1.110%
CRYU .3675 SEARCH TECHNIQUES USED:
CRYL -.3675 Sectioning (Method 1)

*Excessive constraint Pattern (Method 2)

LOADS violation

LC N P TABLE D7.

£a

1 800 0
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SOLUTION ToQ CASE 7-~1 USING SEARCH COMBINATION (9,2,9,2,5,2,3)

(Limits imposed on d/t)

tg t, t, d, d, 2 vy W
Final 0.030 0,0335 0.05009 }0.50166 |} 1.0483 [10.936 1.3110 831.21
Initial | 0.05 0.1 0.05 1.0 2.0 8.0 1.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E~7 1.0E~7 1.0E-7 1.0E-7 1.0E-7
L = 291.0 = 95,5 %%= 21.0

T.c. 1 NUMOPT = 7 Gy = 50000. Yy = 0.101 o

G.B. 1.0046 METHOP = 9,2 9,2,5,2,3 £ = 10.5E6 = 0.333 w = 150

P.B. 1.0058

S.B. 1.0072 Wave Numbers

LRB +.0028 1o Gross Panel | Skin

CRBEU 0

CRBL -57.114 2 M 15 1 8

S.¥. 0.3695

LRYU 20.3721 13 35 1

LRYL 0.3721

CRYU 0.1083 SEARCH TECHNIQUES USED:

CRYL -0.1083 Random Ray (Method 9)

Pattern (Method 2)
Creeping (Method 5)
LoaDS Magnification (Method 3)
LC N P TABLE D8
1 800 4]
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (5,2,5,2)
(Limits imposed on 4/t)

t t 2
s % t¢ dx d¢ x £.¢ w
Final .02446 .03211 .06172 .46184 1.2766 10.280 1.0132 819,04
Initial | 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E~7 1.0E-7 1.0E~7 1.0E~7 1.0E-7 1.0B-7 1.0E-7
das
I, = 291.0 = 95,5 = 20.7
9 w
L.c. 1 NUMOPT = 4 gy = 50000. = 0.101
- dx _
G.B. 1.0044. METHOP = 5’2,5’2 E = 10.5E6 = 0.333 m— 14.4
P.B. 1.0050
S.B. 1.0050 Wave Numbers
LRB 1.0033 e 5 e -
TOSS ane
CRBU 0 Skin
CRBL -54.339 1 M 16 1 9
s.Y. .3979
LRYU —.4024 11 35 1
LRYL .4024
CRYU .1048 SEARCH TECHNIQUES USED:
CRYL -.1048 Creeping (Method 5)
Pattern (Method 2)
LOADS Table D9.
1C N P
1 800 0
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (6,2,6,2)
(Limits imposed on 4/t)

t

R t, t¢ d, a¢ i "q, W
Final |-02544 -02891 05625 . 44930 1.3713 9.5067 1.0375 806.85
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
L = 291.0 = 95.5 %;. = 24.4

T T e wII I

G.B. [1.0036. METHOP = 6,2,6,2 E = 10.5E = 0. dy = +7+

P.B. .0056

S.B. L.0025 Wave Numbers

LRB 1 ,2045%

c Gross Panel skin

CRBU 0

CRBL  }75.909 1 Mos 1 8

S.Y. .40922 N

LRYU  |.4139 10 37 !

LRYL L4139

CRYU .1074 SEARCH TECENIQUES USED:

CRYL -.1074 Quadratic (Method 6)

Pattern (Method 2)
* Excessive Constraint
LOADS Violation
LC N P Table D10.
1 800 0
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (7,2)
(Limits imposed on d/t)

tg t, ts a, d¢ [ Ly W
Final .03718 [.03222 .03948 .50308 |.90802 8.3231 1.7334 894.04
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7

L = 291.0 = 95.5 '%—3} = 20.8
e i NUMOPT = 2 oy = 50000. = 0.101
. _ dx
G.B. 10012 METHOP = E = 10.5E6 = 0.333 I = 1.1
P.B. L6931
S.B. 1.0044 Wave Numbers
LRB
.9977 1C Gross Panel | Skin
CRBU 0
CREBL  l64.618 1 M 16 1 5
S.Y. .3389
LRYU ~.3407 14 40 1
LRYL .3407
CRYU .1029 SEARCH TECHNIQUES USED:
CRYL -.1029 Davidon (Method 7)
Pattern (Method 2)
LOADS
1C N p Table D11l.
1 800 0
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (4,2)
(Limits imposed on d4/t)

)
Final .02970 | .03158 .04092 46631 |3 1944 8.3364 1.2821 824,52
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E~7 1.0E-7 1.0E-7 1.0E~7 1.0E~7 1.0E~7 1.0E~7
L = 291.0 R= 95.5 %’%= 28.3

L.C. 1 NUMOPT = 2 Oy = 50000. Y= 0.102

G.B. 99903 METHOP = 4,2 E = 10,5E6 v = 0.333 %- = 14.75

P.B. .73365

S.B. 1.0029 Wave Numbersa

LRB

1.0053 1C Gross Panel | Skin
CRBU 0
M

CRBL -111.53 1 17 1 6

S.Y. .3803 N

LRYU -.3834 12 39 1

LRYL .3834

CRYU 1089 SEARCH TECHNIQUES USED:

CRYL -.1089 Steepest-Descent (Method 4)

Pattern (Method 2)
LOADS
Lc N P Table D12.
1 800 0
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SOLUTION TO CASE 7-I USING SEARCH COMBINATION (1,2)
(Limits imposed on 4/t)

tg t, t¢ a, d¢ Lo 2.¢ W
Final .02561 | .03075 .05682 .43385 1.1801 9.3976 .97670 813.46
Initial 0.05 0.1 0.05 1.0 2.0 8.0 3,0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
L = 291.0 R= 95,5 %%s: 20.8

L.C. 1 NUMOPT =2 Oy = 50,000. Y= ¢.101 o

G.B. 1.0690% METHOP = 1,2 B = 10.5E6 v =0.333 By = 144

P.B. .9811

S.B. .8421 Wave Numbers

LRB -9622 Lc Gross Panel Skin

CRBU 0

CRBL =59.967 2 M 17 1 9

S.Y, L3969

LRYU ~. 4010 11 37 1

LRYL .4010

CRYU .1070 SEARCH TECHNIQUES USED:

CRYL ~.1070 Sectioning (Method 1)

*Excessive constraint Pattern (Method 2)
LOADS violation
e N P
Table D13.
1 800 0
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SOLUTION TO CASE 7-I USING AESOP WARPING TRANSFORMATION

tg ty ty d, d¢ % 2¢ W
Final .02899 } .03203 .04921 |.47911 .98 6.9709 1.1208 837.76
Initial |l ¢.05 0.1 1.05 1.0 2.0 8.0 3.0 1681.7
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
WARPAL 0.03 0.0335 0.05009 0.50166 | 1.0483 10.936 1.3110
L = 291.0 = 95,5 Sf-= 19.8

T.C. 1 NUMOPT = 7 gy = 50000. =0.101 4

G.B. 9951 METHOP = 9,2,9,2,5,2,3 &£ = 10.5E6 = 0.333 o = 15.0

P.B. .9644

S.B. .9795 Wave Numbers

LRB 19986 LC Gross Panel | skin

CRBU 0

CRBL -56.66 1 15 1 8

s.Y. .3669

LRY0 YL 13 36 1

LRYL .3695

CRYU TIUT7S

CRYL -.1075 Search Techniques Used:

Pattern (Method 2)
son0s b M e
L.C N P Magnification (Method 3)
1 800 0 TABLE D14.
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SOLUTTON TO CASE 7-I USING SEARCH COMBINATION (9,2,9,2,5,2,3)

t t, ty 4, d¢ Sy z¢ w
Final .02979 .03376 .05185 .50544 1.0381 |11.239 1.3178 534,51
Initial .01 .01 .01 .2 .2 1.0 1.0 246.74
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 | 1.0E-7 | 1.0E-7 1.0E-7 | 1.0E-7 1.0E-7 | 1.0E-7 |

d
L = 291.0 R = 95.5 T:%" 20.0
L.C. 1 NUMOPT = 7 Oy ™ s50000. Y™ p.101 ax
G.B. 1.0018 METHOP = 9,2,9,2,5,2,3F ™ 10.5E6 vV = 0,333 tx = 15.0
P.E. 1.0329
S.B. 1.0061 Wave Numbers
LRB 1.0006
[ Lc Gross Panel Skin
CRBU 0
CRBL 51,736 1 15 1 8
S.Y. 3677
LRYU -.3703 13 35 1
LRYL .3703
CRYU .10789 SEARCH TECHNIQUES USED:
CRYL -.10789 Random Ray (Method 9)
Pattern (Method 2)
Creeping (Method 5)
LOADS Magnification (Method 3)
1C N P
1 800 0 TABLE DIS.
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SOLUTION TO CASE 7-T USING AESOP WARPING TRANSEORMATION

) 2
tg t t¢ a, d¢ % 6 W
Final 02706 |.,10350 .02049 1.3206 .41088  |.54820 20.0 867.48
Initial | .01 .01 .01 ) 2 1.0 1.0 246.74
U. B. 10.0 10.0 10.0 20.0 20.0 50.0 20.0
L. B. 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7 1.0E-7
L = 291.0 R = 95.5
= .101
L.C. 1 9% = 50'202 YT
E = 10.5E = .
G.B. 1.0045 v
P.B. .0079
S.B. 1.0029 Wave Numbers
LRB
-4275 LC Gross Panel Skin
CRBU
0.0 - p 3 1
CRBL ~1.304 1
S.Y. L4500
LRYU ~-.4568 11 0 1
LRYL L4568
CRYU L1011
CRYL -.1011
1.OADS
LC N P
1 800 0 TpBLE D16.
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APPENDIX E

PROGRAM STRUCTURE AND DATA INPUT/OUTPUT DESCRIPTION

Figure El defines the overlay structure for the
program. The central memory core storage requirement
is 70000g locations. All data required by the program
is input through two namelist data blocks. The first
data block, "CR1217", is for the analysis data; the
second data block, IAESOP, is for the optimization data.

For each complete analysis the following output is
obtained:

CLT These are the critical buckling load
values divided by H 5 for the modes saved
for the skin for th&“last load condition.

SMs The values of m saved, starting with all
the values for gross buckling for all
load conditions,followed by panel buck-
ling for all load conditions, followed
by skin buckling for all load conditions.

SNS Same as SMS but for the values of n which
are saved.

CRITICAL LOADS Each line contains the critical buckling
load for gross, panel, and skin buckling
for one load condition; successive load
conditions are on successive lines.

MODE SHAPES Same order as above giving the values of
m and n.
LRS Stress in the longitudinal rib for each

load condition.

CRS Stress in the circumferential rib for each
load condition.

DES Actual value of distortion energy stress
squared for each load condition.

El



EBU

EBL

LRCB

BEU

BEL

BLR

EPA

TS, TX, TY, DX,

AX, AY

Critical strain value, circumferential rib,
for an expansion of the cylinder, for each
load condition.

Critical strain value, circumferential rib
for a contraction of the cylinder.

Critical buckling stress for the longitudi-
nal rib, for each load condition.

Logical wvariables signifying the existence
of a critical strain EBU, T for True, F for
false.

Same as above for EBL.
Same as above for LRCB.

Actual value of circumferential strain for
each load condition.

DY, LX, LY These correspond to tg, txs
tor dxr dor Lxs L9.

Areas of the longitudinal and circumferen-
tial stiffeners, respectively.

The following eleven lines of output are the ratios
of actual values of the behavior variables to the critical
values, in columns for each load condition.

G.B.
P.B.
S.B.
LRB

CRBU

E2

Gross buckling
Panel buckling
Skin buckling
Longitudinal stiffener buckling

Circumferential stiffener buckling for an
expansion of the cylinder.



CRBL Circumferential stiffener buckling for a
contraction of the cylinder.

S.Y. Skin yield

LRYU Longitudinal stiffener yield in tension

LRYL Longitudinal stiffener yield in compression

CRYU Circumferential stiffener yield in tension

CRYL C@rcumferential stiffener yield in compres-
sion

WT Weight of the cylinder in pounds.

The output obtained after each partial analysis is
controlled by the user through the AESOP print control
integers described later in this section. {See AESOP
Namelist Input Description).

Namelist Data Block "CR1217"

This data block is read and defined in the analysis
subprogram NL1217. All nominal data values are established
by the analysis subprogram D1217. Data block CR1217
defines all the input variables required for the analysis
subprograms. A complete list of the namelist data block
CR1217 is presented in Table E1.
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(0,0)

MAIN PROGRAM

AESOP CONTROL PROGRAM AND PATTERN SEARCH

ANALYSIS ROUTINES FOR SHELL PROGRAM

CR1217 CYCLE PRINT ROUTINES

CR1217 INPUT-OUTPUT ROUTINES

CR1217 NAMELIST INPUT ROUTINES

(3,0)](4,0)|(5,0)}{(6,0)

DATA INITIALIZATION ROUTINES

(2,0)
Dummy Root for AESQOP Search Routines

DUMMY

RAY SEARCH

NORMAL RANDOM RAY SEARCH

UNIFORM RANDOM RAY SEARCH

RANDOM POINT SEARCH

DAVIDON SEARCH

QUADRATIC SEARCH

ADAPTIVE CREEPING SEARCH

STEEPEST-DESCENT SEARCH

MAGNIFY SEARCH

DUMMY

(2,1)[(2,2)[(2,3){(2,4)|(2,5)(2,6)](2,7){(2,10){(2,11)i{(2,12)[(2,13) (2,14)

SECTIONING SEARCH

(1,0)

AESOP INPUT ROUTINES

E4

PROGRAM OVERLAY STRUCTURE

FIGURE El.



TABLE El.
NAMELIST Data Block "CR1217"

NMENOMIC NOMINAL DESCRIPTION
VALUES
BDV( ) First seven Logical variables determining
true, eightl] active design variables. One
false. for each design variable plus

one to tell when the two depth
variables are to be kept equal.
The first seven guantities re-
late one-for-one the seven
design variables in the
following order: tg,tx,t¢,dx,
d¢,2x,%¢9. To make the two
depth variables equal, the
eighth value of the array BDV
is made true, and the fifth
value is made false. (The
fifth value corresponds to d¢).
The program will then make dg

dg.

BOTULX 20.0 Upper limit for (d/t)x
BOTULY 20.0 Upper limit for (d/t)¢

CRCL( ) -5.0E4 Compressive yield stress for

circumferential stiffeners for
each load condition, ©
{(1bs/in2) $S0C

CRCU( ) 5.0E4 Tensile yield stress for circum-—
ferential stiffeners for each
load condition, 0¢SOT(lbs/in2)

DLT (2) 0.0 Indicator, zero when the longi-
tudinal stiffeners are contin-

uous; one otherwise, wa.

DLT (3) 1.0 Indicator, zero when circumfer-
ential stiffeners are continu-
ous,; one otherwise, 6¢w'
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MNEMONIC

NOMINAL
VALUES

DESCRIPTION

EOF

EX( )

EY( )

E1( )

E2( )

GAM( )

GSM{ )

ICACYC( )

IREAD

False

1.0E7

1.0E7

1.0E7

1.0E7

.101

3750937.7

Logical variable. If true, the
program will terminate.

Longitudinal stiffener modulus
for each load condition, Eyg.

Modulus of circumferential
stiffener for each load
condition, E¢s,

Longitudinal modulus of skin
for each load condition Ey
(1bs/inch?)

Circumferential modulus of
skin for each load condition,

E¢.

Densities of the skin, circum-
ferential stiffeners, and
longitudinal stiffeners, re-
spectively (lbs/inch2)

Shear modulus of skin for each
load condition, G.

Number of load conditions,
eight maximum; integer.

An array of ten elements used
to specify optimization cycles
on which to perform a complete
analysis.

Integer variable, TIf 1217,
the program will read data
cards in the same format as
gpecified by NASA CR-1217.
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MNEMONIC

NOMINAL
VALUES

DESCRIPTION

IWRITE

KAPA( ,

L

LRCL( )

LRCU( )

NL( , )

NsM( , )

)

1217

10.0

-5.0E4

5.0E4

20

15

(Not set)

Integer vyariable. If 1217,
the program will print the
input data in the same format
as shown in NASA CR-1217.

Constants defining yield envel-
ope, KgB. Kpp is read first
for each load condition then
kcr for each load condition.
Similarly, kcc and xpc are read.

Length of cylinder (inches).

Compressive yield stress for
longitudinal stiffeners for
each load condition, ©
(1bs/in2) x50C

Tensile yield stress for the
longitudinal stiffeners for
each load condition, ©

(1bs/in2) xS0T

Limit on the number of half
wave numbers searched in the
longitudinal direction for
each load condition for each
cylinder failure mgde. The
order is load condition then
failure modes. Integer.

(3 x 1).

Limits on the number of full
wave numbers searched.

Number of modes saved for the
approximate analysis. The
values for the first lcad
condition are read in the order
gross, panel, skin, and then
this is repeated for load
condition two, etc. Integers
(I x 3).
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MNEMONIC NOMINAL DESCRIPTION
VALUES

NUX( ) .333 Poisson's ratio of skin for
each load condition, Moo

NUY( ) .333 Poisson's ratio of skin for
each load condition, U«

NUl( ) .333 Poisson's ratio for the circum-
ferential stiffeners for each
load condition.

NU2( ) .333 Poisson's ratio for the longi-
tudinal stiffeners for each
load condition.

P1( ) 0.0 Applied axial compressive loads
for each load condition, N
{lbs/inch).

pP2( ) 0.0 Applied external radial pressure
for each load condition, p
{(1bs/inch2)

R 10.0 Radius of cylinder (inches)

so( , ) 5.0E4 Skin yield stresses. First

SXO is read for each load
c888ition and then Sxoc is

read for each load condition.
Similarly S¢or and S$oc are read.

NOTE: 1Initial values of the design variables (tg,tx,t¢.dx,
d¢,2X,R¢) are input to the program through the AESOP namelist

"IAESOP"

E8
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NAMELIST Data Block "IAESOP"

This data block is read and defined in the optimization
subprogram by subroutine BAESOP. All nominal data values are
established by the optimization subroutine BDATA7. Data
block IAESOP primarily defines which combination of the nine
optimization search algorithms of the optimization subprogram
are to be employed, how they are to be employed, and how many
times the optimization cycle is to be repeated.

The nine search algorithms available are described in
reference 1l; these are listed below.

1. Sectioning 6. Quadratic

2. Pattern 7. Davidon

3. Magnification 8. Random Point
4., Steepest-Descent 9. Random Ray

5. Adaptive Creeping

A complete list of optimization data is presented in
Tables E2. and E3. . Table E2 contains the basic optimization
control data. Table E3 contains the specialized print control
data. It should be emphasized that all items in Tables E2
and E3 are read by the single NAMELIST input block IAESOP.

AESOP Print Control

AESOP has a flexible print output capability. Varying
levels of printout are available at user option as follows:

Summary of function and control parameter values
at the beginning and end of the optimization
process;

Summary of function and control parameters values
at the end of each cycle;

Summary of function and control parameter values
at the end of each evaluation;

Detailed printout of individual search parameters.

The convention adapted for print indicator is a six-letter
mnemonic as described below.

NOTE: In all cases print is given when the indicator is non-
zero and omitted when it is zero.

E9



EXAMPLES: 1) IPACRP=1l, Print control vector following
creeping search

2) IPDPEN=1l, Supply detailed print output
from subroutine PENALTY

IP X XXX Subroutine Reference

= T
F CRP - CREEPR
CYC = MAINOP (End of Cycle)
DVD - DAVIDN
MAG - MAGIFY
PAT - PATERN

PEN - PENLTY

QUA - QUADRA
RPT - RPOINT
RRS - RANRAY

SEC - SECTON

STD - STDESC

Type of Print
A - Control Vector - ALPHA

D - Detailed Print

F - Function Array - FUNCTN

__—% Means PRINT INDICATOR
An alphabetical list of print control indicators follows in TableE3,

relevant search is identified for each input in the same way
described earlier for the optimization data.

E10



TABLE E2..~—BASIC OPTIMIZATION DATA

MNEMONIC

RELEVANT
SEARCH

12

4 5

6

7

8

9

NOMINAL
VALUES

DESCRIPTION

ALFSINi

ALPHAi
ALPHI,
1

ALPLO.
i

CREPMNi

DCREEPi
FACTHI
FACTLO
*
FTOLi

INDWMA

IRANDM

X

X

X

X

X

100*1.

100*1.

100*1.

100*1.

100%*
.0000001

100*.001

.001

.00001

20*1.

Determines first pertur~
bation directions in
creeping search.

Nominal values of control
parameters.

Upper control parameter
search limits.

Lower control parameter
search limits.

Minimum perturbations to
be employed in creeping
search.

Starting perturbations
for creeping search.

Initial termination tol-
erance on Golden Section.

Final termination tolerxr-
ance on Golden Section

Final desired constraint
tolerances.

Steepest-descent weighting
matrix indicator.

- Unit matrix

- Empirical matrix

- Alternates between
unit and empirical
matrix

NHO

Selects the order in
which the control vari-
ables are perturbed and
sectioning searches.

0 - Uniformly random
1l - Natural order
2 - Reverse natural order

* Used only in constraint logic

E11
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MNEMONIC

RELEVANT
SEARCH

12

3f4 5 647 8 9

NOMINAL
VALUES

DESCRIPTION

IREPET

ISECOF

ISIDE

IWARP

LIMIT

MAXCRP

MAXDVD

MAXJJJ

MAXMAG

MAXRPT

MAXRRS

XX XXX XJX X X

10

1000

10

200

99

10

100

Number of optimization
cycles to be completed.

Cycle number at which
sectioning search is
terminated.

Selects extreme of the
search interval to be
used when performance is
constant on search ray.

0 -~ Lower limit
1l -~ Upper limit

Controls multiple extre-~
mal option.

0 - Performance response
surface unaltered

1l - Performance response
surface is warped

Number of sectioning
searches.

Number of complete
creeping searches to

be performed when search
is called.

The number of Davidon
searches carried out when
this method is selected.

The maximum number of
performance evaluations.

Maximum number of magni-
fication searches in an
optimization calculation.

Number of random point
evaluations.

Number of random rays
to be employed.
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RELEVANT
SEARCH

NOMINAL

MNEMONIC | 1 2 3[4 5 6{7 8

9 | VALUES

DESCRIPTION

METHOPi X XXX X X{X X

NALPHA X X X

NFUNC X X XXX X

NMAXLO X X X

NMAXUP XX X X

NPHIAC X

NPSI;* XXX|XXX|XX
NPTSRYt

NUMOPT X X XX X X|X X

NUMPSI* X X XXX X|XX
NUMSTD X

PHIEPS X X X X

PSIWTi* XX X|X X XXX

Xl|1,2,3,4,5

X)1lo0

10

X | 20%,
0001

The sequence of searches
to be employed.

- Sectioning

- Pattern

- Magnify

= Steepest-Descent
Creeping

- Quadratic

- Davidon

- Random Point

- Random Ray

11- Arbitrary Ray Search
Number of control param-
eters to be employed

Number of functions to be
considered.

OOV bW
1

Initial maximum number of
evaluations in Golden
Section.

Final maximum number of
evaluations in Golden
Section and to limit the
number of evaluations in
pattern.

Function number of the
performance criteria.

Constraint function numbers

Number of steps to take
when the ray search is
called

Number of optimization
searches to be employed

Number of constraints

Number of steepest-desc-
ent searches

Performance values with-
in PHIEPS of the minimum
value yet attained are
treated as being equal
in Golden Section

Initial constraint error
weights

* Used only in constraint
+ Pertains to ray search

logic

E13




RELEVANT
SEARCH

MNEMONIC 12 3f4 56|78

9

NOMINAL
VALUES

DESCRIPTION

QFACTR X

QPERT; p'e

RALOHIt

RANGEN X

RAYDIVY

RUFHI

RUFLO

SIBARi* X X XX X XXX

TOLFAC; * X X XX XXX X
TTOLi* X X XX X XX X

WITER; * XX XXX XXX

>

>

1.0

20*,005

True

10.

.01

.00001

20*0.0

20*%0.5

20*100.

100*1.0

Quadratic perturbation
factor

Initial control param~-
eter perturbations for
quadratic and Davidon
searches

Logical variable used to
indicate direction to go
along the multidimensional
ray. I.e., if true, go
from XTENLO to XTENHI; if
false,go from XTENHI to
XTENLO.

Random number generator
trigger (1.0 means uni-
form distribution), (-1.0
means normal distribution)

Used to compute stepsize;
i.e., if RAYDIV=10,the
stepsize will be such as
to require 10 steps to go
from XTENLO to XTENHI.

Maximum nondimensional
random ray perturbation
size on any component.
Value of 1.0 gives maxi-
mum perturbation equal
to search range.

Minimum nondimensional
random ray perturbation
size on any component

Desired constraint values

Constraint tolerance
reduction factor

Initial constraint tol-
erances

Starting values for iter-
ative component of
steepest-descent weighting
matrix

* Used only in constraint logic

t+ Pertains to ray search

ET14



RELEVANT
SEARCH NOMINAL

MNEMONIC 1 2 345 6|7 89 |VALUES DESCRIPTION

WTDOWN;* | X X X X {20*%0.5 Constraint weight decrease
factor

XTENHI4 XX XX X X|X X X1100*%0.0 Used to extend upper search
limit

XTENLO; X X X X | 100%0.0 Used to extend lower search
limit in Golden Section if
performance is constant in
feasible region

WARPAL; X X XX X X|X X X 1100%0.0 The warping origin in the
control parameter space for
multiple extremal feature

WARPN X XXX X XXX X 12.0 The exponent of the warping
transformation

*Used only on constraint logic
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TABLE E3 ,—OPTIMIZATION PRINT CONTROL DATA

RELEVANT
SEARCH NOMINAL

MNEMONIC} 1 2 3{4 5 617 8 9] VALUES DESCRIPTION

IPACRP X 0] Creeping control param-
eter print indicator.

IPACYC X X XX X XX X X| O Cycle control parameter
print indicator.

IPADVD X 0 Davidon control param-
eter print indicator.

IPAMAG X 0 Magnification control
parameter print indi-
cator.

IPAPAT X 0 Pattern control param-
eter print indicator.

IPAPEN X X XIX X XXX X] O Constraint penalty
control parameter print
indicator.

IPAQUA X 0 Quadratic control param-
eter print indicator.

IPARPT X 0 Random point control
parameter print indi-
cator.

IPARRS Xt 0 Random ray control
parameter print indi-
cator.

IPASEC X 0 Sectioning control
parameter print indi-
cator.

IPASTD X 0 Steepest-descent control
parameter print indi-
cator.

IPDCRP X 0 Detalled creeping print
indicator.

IPDDVD X 0 Detailed Davidon print
indicator.
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RELEVANT
SEARCH NOMINAL

MNEMONIC | 1 2 314 5 6|7 8 9] VALUES DESCRIPTION

IPDMAG X 0 Detailed magnification
print indicator.

IPDPAT X 0 Detailed pattern print
indicator.

IPDQUA X 0 Detailed guadratic
print indicator.

IPDRIV X X 0 Detailed derivatives
print indicator.

IPDRPT X 0 Detailed random point
print indicator.

IPDRRS X{ O Detailed random ray
print indicator.

IPDSEC X 0 Detailed sectioning

| print indicator.
f

IPDSTD X Detailed steepest-descent
print indicator.

IPFCRP X 0 Creeping function print
indicator.

IPFCYC XX XIXXXIXXX|] o Optimal function print
indicator at the end of
each cycle.

IPFDVD X 0 Davidon function print
indicator.

IPFMAG X 0 Magnification function
print indicator.

IPFPAT X 0 Pattern function print
indicator.

IPFQUA X 0 Quadratic function print
indicator.

IPFRPT X 0 Random point function
print indicator.
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RELEVANT
SEARCH NOMINAL

MNEMONIC 123lasel7 89 VALUES DESCRIPTION

IPFRRS X{o0 Random ray function print
indicator.

IPFSEC X 0 Sectioning function print
indicator

IPFSTD X 0 Steepest-descent function
print indicator

IPGAIN X XXX XXIXXX]|1 Print every iteration
which will improve the
performance.

IPNAML X XXX XXIXXX]|1 Namelist output control

0, omit print
= 1, print namelist data
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AESOP Data Listings

Program AESOP data can be conveniently grouped according
to search and function, The user employing a particular
search can independently specify the characteristics of that
search and may not be concerned with input relevant to the other
searches., Hence, a data grouping by search and by function is
presented below for user convenience. It should be noted that
certain inputs are common to more than one search; where this
occurs, the input is repetitively defined in each search.

Search Selection and Control.—

NUMOPT ~ The number of optimization techniques to be employed.
Each individual search request in a sequence of
requests adds to this input (e.g., the search se-
quence 4,2,4,2 requires NUMOPT = 4). Maximum number
of searches employed must satisfy NUMOPT < 20.

METHOPi - The search sequence by numeric identification. For
example, the input METHOP(l) = 1,2,3,4,5,6,7,8,9
signifies the following search sequence:

1l -~ Sectioning

2 - Pattern

3 - Magnification

4 - Steepest-Descent

5 - Adaptive Creeping

6 - Quadratic

7 - Davidon (Fletcher-Powell)

8 - Random Point (Monte-Carlo)

9 - Random Ray (random evolution)
11 Arbitrary Ray

The complete search sequence will be referred to as
an optimization cycle.

MAXJJJ - The maximum number of system evaluations. A direct
iteration number limit.

IREPET - The maximum number of times the search sequence (op-
timizaton cycle) defined in METHOPi will be utilized

Parameter Selection.—

NALPHA - The number of parameters available for optimization.
No more than one hundred parameters may be employed.
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ALPLOi
ALPHIi

ALPHAi

Lower bounds on each parameter search range
Upper bounds on each parameter search range

The nominal parameter values. Note that ALPLO. <
ALPHA:. < ALPHI, must be satisfied. If a parti+

cular'parametet, say ALPHAS, is to be fixed in
value in a particular computation, then set
ALPLOj = ALPHA4 = ALPHIj. This effectively re-
duces the parameter space dimension by one for
each such parameter.

Multiple Extremal Option.—

IWARP

WARPAL,
1

WARPN

Controls multiple extremal option
IWARP 1, automatically warp the response surface
IWARP 0, leaves the response surface unmodified

nn

The point at which the warping transformation is
centered, i.e., the location of a known extremal

point.

The degree of the warping transformation. The
greater WARPN, the greater the response surface

distortion.

Optimization Function Selection.,—

FUNCTN,
1

AN INTERNAL ARRAY CONTAINING ALL COMPUTED OPTIMI—!
ZATION FUNCTIONS ﬁ

NFUNC

NPHIAC

NUMPST

NPSIi

SIBAR,
1

E20

The total number of functions (FUNCTN;) being
computed in the system model
NOTE: NFUNC < 100.

The functiaon to be minimized. AESOP always searches

for a minimum;to maximize FUNCTNpy define FUNCTNp =
-FUNCTNp and minimize FUNCTNp.

The total number of functions being constrained.
NOTE: NUMPSI < 20.

The functions to be constrained, e.g., NPSI(l) =
3, 5, 1, 7 indicates that FUNCTN3, FUNCTNs5,
FUNCTN1, and FUNCTN7 are to be constrained.

The desired values of the constraint functions
defined by NPSI,




Lol

FTOLi

TTOL;

PSIWT,
1

WIUP.
i

WIDOWN,
1

The acceptable tolerances on the constraint
function values, SIBARi

Initial acceptable tolerances on the constraint
function values, (should be approximately 100
times greater than the corresponding FTOLi).

Initial constraint error weighting factors in the
augmented performance function, ¢*, where

0% = ¢ + W, (V. -¥;)? (23)
Here *
W, = PSIWT,
1 1

Incremental multiplicative constants used to
increase the Wi on constraints which prove diffi-
cult to satisfy. The nominal values of WIUPi =
2.0 should be acceptable; hence, this input can
normally be omitted.

Decremental multiplicative constants used to
decrease the Wi when a constraint is easily
satisfied. The nominal values of WIDOWN; = 0.5
should be acceptable; hence, this input can
normally be omitted.

Sectioning Search Data (METHOP; = 1).—

LIMIT

NMAXLO

NMAXUP

ISIDE

- The number of times each parameter will be sec-

tioned during a single sectioning search

Maximum number of point evaluations employed in
a single parameter's sectioning at search com-
mencement (first optimization cycle). 1In
successive cycles, the maximum number of points
employed is increased by one.

An upper bound on the maximum number of point
evaluations employed in sectioning a particular
parameter.

Indicator specifying selection of left or right
boundary for a parameter that does not appear to
affect the system performance

ISIDE = 0, Select lower limits
ISIDE = 1, Select upper limits
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Extension of higher search limits (ALPHI;) for a
parameter that does not appear to affect perfor-
mance

XTENHIi

XTENLO; =- Extension of lower search limits for a parameter
that does not appear to affect performance

IRANDM - Controls the order in which the parameters are
sectioned
IRANDM = 0, Random order selected
IRANDM = 1, Natural Order selected
IRANDM = 2, Reverse natural order selected
FACTHI ~ Section termination criteria. If three successive

performance function values are within FACTHI

of each other during sectioning of a given param-
eter on the first optimization cycle, the section
search of that parameter will cease. The termina-
tion criteria is internally reduced with each
optimization cycle.

FACTLO - The lower limit on the termination criteria in
any optimization cycle.

ITRADE - Optimization/trade study indicator

ITRADE = 0, Carry out a normal optimization search

ITRADE = 1, Determine performance function sensi-
tivity to each parameter by sectioning
each parameter in turn about a given
fixed point in parameter space.

IPASEC, = Print indicators (See Table E3, page E17) for section
IPDSEC, search
IPFSEC

Pattern Search Data (METHOP; = 2).—

IPAPAT, ~ Pattern Search print indicators
IPDPAT,
IPFPAT

Magnification Search Data (METHOP; = 3) .—

MAXMAG - Maximum number of point evaluations performed
during a single magnification search _
DELMAG ~ The magnification perturbation size, nominally

set to 1% of distance to origin. Not normally
modified from nominal value
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IPAMAG, - Magnification search print indicators, (See Table

IPDMAG, E3, Pages El6 to El18).
IPFMAG

Steepest-Descent Search Data (METHOPi = 4),—

Number of gradient evaluations and one-dimensional
searches performed each time that a steepest~descent
search is requested during the optimization cycle.

NUMSTD

INDWMA - Steepest-descent weighting matrix indicator
INDWMA = 0., Unit matrix
INDWMA l., Empirical matrix
INDWMA 2., Alternate on each cycle between
unit and empirical matrices

WI'I‘ERi - Learning factors for steepest-descent weighting
matrix

NMAXLO - Maximum number of point evaluations employed in
the steepest-descent one-dimensional ray search at
search commencement (first optimization cycle).

In successive cycles, the maximum number of point
evaluations permitted is increased by one.

NMAXUP - Upper bound on the number of peoint evaluations
along a steepest-descent one-dimensional ray in
any optimization cycle.

FACTHI ~ One~dimensional steepest-descent ray search
termination criteria during first cycle. The
termination criteria is reduced in each successive
optimization cycle.

FACTLO - Lower limit on one~-dimensional steepest-descent
ray search termination criteria, in any optimi-
zation cycle.

IPASTD,
IPDSTD,
IPFSTD

Steepest-descent search print control indicators,

Adaptive Creeping Search Data (METHOP; = 5).—

MAXCRP - Number of creeping search perturbations introduced
into each parameter by a single adaptive creeping
search in the optimization cycle.
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IRANDM

DCREEP,

1
CREPMN,

1
CREPMX
ALFSIN;
IPACRP,

IPDCRP,
IPFCRP

Controls the order in which parameters are perturbed
IRANDM = 0 , Random order

IRANDM Natural order

IRANDM 2 , Reverse natural order

n
[
~

The initial perturbations to each parameter
Minimum perturbations for each parameter
Maximum perturbations for each parameter

Direction of perturbation for each parameter
(ALFSIN§ = 1.0)

Adaptive creeping search print indicators

Quadratic Search Data (METHOP; = 6).—

QPERTi

QFACTR

NMAXLO

NMAXUP

FACTHI

FACTLO

IPAQUA,
IPDQUA,
IPFQUA

E24

Parameter perturbation magnitudes employed in
computation of numerical partial derivative

matrices 2
a_?;__. and E.?_
001 005 001

Scaling factor on the QPERTi

Maximum number of point evaluations employed in
the guadratic one-dimensional ray search at search
commencement (first optimization cycle). In suc-
cessive optimization cycles, the number of point
evaluations permitted increases by one.

Upper bound on the number of point evaluations
along a gquadratic one-dimensional ray search, in
any cycle.

One-dimensional quadratic ray search termination
criteria during first cycle. The termination
criteria is decreased in each successive optimi-
zation cycle.

Lower limit on one-dimensional guadratic ray
search termination criteria, in any optimization
cycle.

Quadratic search print indicators



Davidon Search Data (METHOP; = 7).—

MAXDVD

QPERTi

NMAXLO

NMAXUP

FACTHI

FACTLO

IPADVD,
IPDDVD,
IPFDVD

Number of Davidon (Fletcher-Powell) gradient
evaluations and one-dimensional searches performed
each time that a Davidon search is requested in
the optimization cycle

Parameter perturbation magnitudes employed in com-
putation of numerical partial derivatives,

09
Suj

Maximum number of point evaluations employed in
the Davidon one-dimensional ray search at search
commencement (first optimization cycle). In
successive optimization cycles, the number of
point evaluations permitted is increased by one.

Upper bound on the number of point evaluations
along a Davidon search one-dimensional ray in
any cycle

One-dimensional Davidon ray search termination
criteria during first optimization cycle. The
termination criteria is decreased in each succes-
sive optimization cycle.

ILower limit on one-~dimensional Davidon ray search
termination criteria, in any optimization cycle

Davidon print control indicators,

Random Point Search (METHOP; = 8).—

MAXRPT

IPARPT,
IPDRPT,
IPFRPT

The maximum number of random points tc be employed
in the first request for a random point search
within the optimization cycle. In successive
requests, MAXRPT is set to zero,and no evaluations
result.

Random point search print control indicators
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Random Ray Search (METHOP;i = 9).

MAXRRS - The maximum number of random rays, one or
two-sided, investigated each time the
optimization cycle requests a random ray
search.

RUFHI - The initial maximum non-dimension pertur-~
bation measure for each parameter. This
is reduced each time random ray search
consistently fails to improve performance.

RUFLO ~ Minimum-maximum dimensional perturbation
measure for each parameter.

IPARRS, - Random ray search print control indicators

PIDRRS,
IPFRRS

Arbitrary Ray Search (METHOPi = 11).

The arbitrary ray search searches the ray passing
through two specified points in the multidimensional
control space. For printout it is suggested that the
tabular summary feature of AESOP be used.

RALOHI Defines which direction to search; i.e.,
if TRUE, search "LO" - "HI", if
FALSE, search "HI" -» "LO"

NPTSRY Total number of evaluations to be used
on ray search

RAYDIV Defines stepsize for ray search; i.e.,
control parameter step size = (XTENHI; -

XTENLOj ) /RAYDIV

XTENHT § Defines the control parameter values
at "HI"t end of the multidimensional
ray to be searched.

XTENHIi need not be greater than XTENLO;, and XTENLO-
need not be less than XTENHIy <n this search. These two
arrays merely define the end points of a ray in the multi-
dimensional control space.
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